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Abstract

This paper analyzes the strategic situation with one principal and multiple agents, where the

principal offers each agent a bilateral contract in order to purchase the share of property held by

the agent. The agents have private information about their own types; in addition, there exists

externality among the agents. I consider two types of contracts, single-price and contingent, and

fully characterize the optimal contracts under certain conditions. A discussion on efficiency and

an extension to general mechanism design are also provided.
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1 Introduction

In a strategic situation where a principal tries to reach agreement with a group of agents, it

has been thoroughly studied what optimal contracts look like when the principal is able to

bargain with each of the agents independently, i.e. the principal essentially solves a series

of isolated bargaining problems. However, there are a wide range of cases under which

the outcome from one contract would affect incentives for another, even if the principal

can commit to the contract terms in each. In other words, when the action of some agent

would affect others’ payoffs, externalities arise from the bargaining process which need to

be taken into consideration in the contract. For instance, before a court session involving

multiple plaintiffs, from time to time the defendant would like to reach private agreements

with all the plaintiffs for withdrawal of the accusation. Since the legal expense is usually

shared (though not necessarily evenly) by the plaintiffs, it is crucial for the defendant

to realize that the compensation offered to each plaintiff would greatly depend on the

number of plaintiffs to be dealt with. This is an example where positive externalities

among agents would force the principal to offer a higher stake to each agent than she

needs to when bargaining with only one. On the other hand, in Cournot competition for

example, the fact that more existing firms in the market would reduce profits for each

makes it easier for one firm to acquire another, reflecting negative externalities at work.

Apart from externalities, another factor that may alter the contract design is that

information is usually asymmetric between the principal and the agents, and even among

agents. In most cases it is the distribution of agents’ types, not the realization of types,

that is known to both the principal and the agents (for the agents, they typically know their

own types, but are not sure about others’). Such knowledge, or beliefs to be more precise,

can be formed by past experience or through market surveys. The effect of asymmetric

information here is two-fold: on one hand, the principle would have to pay informational

rent to the agents due to the possibility of facing high-typed agents; on the other hand,

information asymmetry among agents would reduce their bargaining power, compared

to an otherwise identical case of full information. It is quite conceivable that in the

optimal contract, which may well be contingent instead of independent as in the case
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without externality, there would be payments in the contract terms that will never occur

in equilibrium. They would serve solely as a tool for manipulation of incentives.

Admittedly, the assumption of common prior belief and common knowledge of such

belief is rather strong, but as the analysis in this paper would demonstrate, the implications

of the model under this assumption is without loss of strong economic intuition. A model

with this assumption relaxed, at the same time, would probably prove to be another

interesting research topic.

This paper is organized in the following way. Section 2 provides a brief literature review

on related topics. Section 3 introduces a benchmark model with single-price contracts, and

Section 4 analyzes contingent contracts. In both sections 3 and 4, the optimal contract

is explicitly derived under some regularity conditions. Section 5 generalizes the contract

form to a class of commitment schemes and identifies the optimal contract form. Section

6 concludes.

2 Related Literature

Literature about contracting with externalities are widely spread in the fields of applied

theory, mechanism design, industrial organization, and law. Segal (1999)[13]’s paper ”Con-

tracting with Externalities” provides a thorough survey, and to a large extent a unified

theory, on the optimal contract as well as the potential inefficiency that follows in the

presence of multilateral externalities and full information. Under a considerably general

setting, he identifies sources of arising inefficiencies such as the principal lacking commit-

ment power and the existence of noise in the execution of the mechanism. Segal (2003)[14]

pushes the analysis one step further to discussing the effect of coordination and discrim-

ination on the aggregate trade and efficiency, and it turns out that such effects would

greatly depend on whether externalities are increasing or decreasing with the volume of

trade. Moller (2007)[11] extends this model to endogenize the timing in sequential offering

and Bernstein and Winter (2011)[2] takes the ”divide and conquer” idea to characterize

the optimal contracting scheme under full information and heterogeneous externalities.

Along the line of research on mechanism design, externalities and asymmetric informa-
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tion are closedly related to the class of environment with endogenous or type-dependent

outside options. In other words, an agent’s utility from rejecting the principal’s offer would

be affected by both his own type and other agents’ decisions. In Jehiel et al. (1996)[8],

the principal is trying to sell a single indivisible good, and externalities take the particular

form of a matrix [αij ] whose (i, j) entry represents externality imposed on agent j by a

sale to agent i. The authors are able to explicitly construct the optimal mechanism under

two particular information structures, assuming full commitment of the principal to the

proposed mechaism. Jullien (2000)[9] analyzes a general asymmetric information model

with one principal and one agent, where the agent’s outside option depends on his type,

and characterizes the optimality conditions for the principal under full participation as

well as optimal exclusion. In Figueroa and Skreta (2008)[6], the above two formulations

are combined: they set up a model where externalities can take a general form, and at

the same time the agents’ outside options depend on other agents’ decisions and their own

private information. Unfortunately, they can only characterize the optimal mechanism

when the agents’ outside option takes a very special form, and it is not so clear how to

implement this mechanism with a feasible contract in reality. Aseff and Chade (2008)[1]

analyze a problem of multi-unit auction and identity-dependent externalities among bid-

ders, derive the seller’s optimal mechanism and characterize its properties. In their model,

the primary objective of the principal is to maximize monetary transfers from sale.

In terms of applications, first there is a rich class of literature on potential externalities

in merger and acquisition, which dates back to Kamien and Zang (1990)[10], who model

acquisition between firms in Cournot competition as a sequential game. Segal (1999[13],

2003[14]) has covered quite a few fundamental models on firm takeover and monopoly

acquisitions in his renowned papers, and Rasmusen et al. (1991)[12] and Segal and Whin-

ston (2000)[15] show in detail how a monopoly can take advantage of externalities among

consumers to deter potential rivals from entering the market; other applications in in-

dustrial organization include discussions on horizontal mergers in an oligopolistic market

(Farrell and Shapiro, 1990)[5] and optimal tender offer strategies for takeover (Burkart et

al., 1998[3]; Burkart and Lee, 2010[4]). The idea of exploiting externalities and private in-

formation in contracting also provides interesting research topics in law, such as incentive
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problems among a group of plaintiffs that prevent a settlement (Stremitzer, 2010)[16] and

buying the right for a harmful project (Guttel and Leshem, 2011)[7].

Compared to existing literature to the best of my knowledge, the model I present

in the following has two features. First, the contract form is both explicit and simple,

which makes it easy to construct concrete examples in illustration of theoretical properties.

Secondly, the equilibrium notion is relatively strong, implying a strong implematation in

the sense of mechanism design. In fact, as will be shown in Section 4, implementation

with strictly dominant strategy emerges with the optimal contingent contract.

3 Basic Model: Single-Price Contract

Consider a risk-neutral principal (designated as ”she”) who is negotiating with a group of

N agents (designated as ”he”) for a buyout project. Let I = {1, ..., i, ..., N} denote the

set of agents. Each agent holds one homogeneous share of some property; the principal’s

valuation on the whole property is an increasing function v(n), where n denotes the number

of shares acquired from the agents and v(0) = 0. Typically, v(n) is increasing in n.

Different functional forms of v(n) can be assumed for different environments; in the most

extreme case, v(n) = v if n = N , 0 otherwise, which reflects the principal’s need to buy

out all the agents for realization of her valuation.

For any agent i, his type is denoted by θi, which is his private information. The types of

agents are independently and identically distributed: θi
iid∼ F [0, θ], where F is continuously

differentiable, and f(θ) = F ′(θ) > 0 ∀θ. I assume that F is common knowledge to both

the principal and the agents.

Let si = 0 or 1 denote agent i’s decision, where si = 1 represents selling and 0 represents

keeping the share to himself. The utility of an agent of type θ, if he does not sell the share

to the principal, is denoted by u(θ;N −n), where n is defined as above. I assume that this

utility is increasing in θ, and agents impose positive externality on others by not selling.

To be precise, u(θ;N − n) is continuously differentiable and strictly increasing in θ and

strictly decreaing in n. Again, the functional form of u is common knowledge among the

parties.
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Consider the following one-shot game: the principal posts a single buyout price, t, and

the agents decide simultaneously whether to accept (s = 1), reject (s = 0), or mix between

the two.

3.1 Equilibrium among Agents

The equilibrium notion I adopt in this paper is Baysian Nash equilibrium. First, it is

helpful to show that any Baysian Nash equilibrium is characterized by a single cutoff θ∗,

where an agent sells his share to the principal if and only if his type is below θ∗.

Lemma 1. In any Baysian Nash equilibrium, there must be a single cutoff θ∗, and each

agent’s equilibrium strategy s∗i is given by

s∗i (θ) =

 1, if θ ≤ θ∗

0, otherwise

Proof. Let ûi(θ; I/{i}) = E[u(θ;N −n)|s∗−i] denote agent i’s expected utility if he rejects

the offer, where I/{i} denotes the set of the agents other than i. It is first clear that

ûi(θ; I) is strictly increasing in θ. It implies that in equilibrium, ∃ unique {θ∗i } such that

∀i,

s∗i (θ) =

 1, if θ ≤ θ∗i
0, otherwise

Now suppose for some i, j, θ∗i < θ∗j . Let û′i(θ; I/{i}) = E[u(θ;n+ 1)|s∗−i], note that

ûi(θ; I/{i}) = F (θ∗j )ûi(θ; I/{i, j}) + (1− F (θ∗j ))û
′
i(θ; I/{i, j})

ûj(θ; I/{j}) = F (θ∗i )ûj(θ; I/{i, j}) + (1− F (θ∗i ))û
′
j(θ; I/{i, j})

Since by assumption θ∗i < θ∗j , ûi(θ; I/{i}) < ûj(θ; I/{j}) ∀θ. However, from the equi-

librium conditions we also have ûi(θ
∗
i ; I/{i}) ≥ t and ûj(θ

∗
j ; I/{j}) ≤ t, which implies

ûi(θ
∗
i ; I/{i}) ≥ ûj(θ∗j ; I/{j}), which is a contradiction. Therefore, θ∗i = θ∗ ∀i.

Let U(θ; θ∗, N) denote the expected payoff of a type θ agent from rejection, then

U(θ; θ∗, N) =

N−1∑
n=0

(N − 1)!

n!(N − 1− n)!
(F (θ∗))n(1− F (θ∗))N−1−nu(θ;N − n)
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where the distribution of n is B(N −1, F (θ∗)). Note that U(θ; θ∗, N) is strictly decreasing

in θ∗ sinceB(N−1, (F (θ′)) strictly first-order stochastically dominatesB(N−1, F (θ)) ∀θ <

θ′, and u(θ;N − n) is strictly decreasing in n. Correspondingly, let V (θ∗;N) denote the

principal’s expected value that can be realized from acquisition of the shares of property,

we have

V (θ∗;N) =
N∑
n=0

N !

n!(N − n)!
F (θ∗)n(1− F (θ∗))N−1−nv(n)

Let g(θ;N) = U(θ; θ,N). As can be easily seen, given a price t, there can be multiple

equilibria as long as the solution to U(θ; θ,N) = t is not unique, as shown in Figure 1

below.

Figure 1: Multiple Equilibrium Cutoffs

Thus to provide a systematic analysis, we need to impose an equilibrium selection

criterion. I hereby define an equilibrium to be one where selling is the only rationalizable

strategy if and only if the agent’s type is below the cutoff. On one hand, this definition

is consistent with literature in empirical studies that have shown that individuals are

reluctant to change their status quo; on the other hand, it can be regarded as the principal

taking a most prudent point of view, taking rejection as a more likely action for the agents
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when there can be multiple equilibria.

As it turns out, the thus defined equilibrium indeed coincides with the lowest possible

cutoff. In other words, the above refinement selects a unique equilibrium given any t >

u(0, N).

Theorem 1. Assume that u(0;N) < u(θ; 1). For any t > u(0;N), if ∃ θ ∈ [0, θ] such that

g(θ;N) = t, then the unique equilibrium among agents is given by

s∗i (θ) =

 1, if θ ≤ θ∗

0, otherwise

where

θ∗ = min{θ : g(θ;N) = t}

Proof. Let θ1 = u−1(t;N). I prove the result by construction:

1. By definition of θ1, we first know that it is a strictly dominant strategy for θ ∈ [0, θ1) to

sell. Then, note that t = U(θ1; 0, N) > U(θ1; θ1, N) = g(θ1). Since U(θ; θ∗, N) is strictly

increasing in θ and strictly decreasing in θ∗, we know that g(θ;N) < t ∀θ ∈ [0, θ1], thus

no θ ∈ [0, θ1] is a solution to g(θ;N) = t.

2. ∃θ2 > θ1 such that U(θ2; θ1, N) = t, otherwise there would be no solution to g(θ;N) = t.

Then after the first round of IESDS, it is a strictly dominant strategy for θ ∈ [0, θ2) to

sell. Moreover, following a similar argument to that in step 1, no θ ∈ [0, θ2] is a solution

to g(θ;N) = t.

...

n. ∃θn > θn−1 such that U(θn; θn−1, N) = t. Then after the (n−1)th round of IESDS, it is

a strictly dominant strategy for θ ∈ [0, θn) to sell. Moreover, following a similar argument

to that in step 1, no θ ∈ [0, θn] is a solution to g(θ;N) = t.

...

By the above steps I construct a sequence {θn}. Since this sequence is increasing and

bounded by θ, it has limit θ∗. At θ∗, it is clear that g(θ∗;N) ≤ t by construction, and
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g(θ∗;N) ≥ t since g is continuous, which imply that g(θ∗;N) = t. Since by construction

no θ ∈ [0, θ∗) is a solution to g(θ;N) = t, θ∗ = min{θ : g(θ;N) = t}. Also by construction

we know that s∗ as specified above is the unique equilibrium, where uniqueness is given

by the uniqueness of the limit.

Corollary 1. ∀t > maxθ′ g(θ′;N), the unique equilibrium is s(θ) = 1 ∀θ.

Proof. If @θ1 such that u(θ1;N) = t, then it is a dominant strategy for any agent to sell.

If there exists such a θ1, then if @θ2 such that U(θ2; θ1, N) = t, it would be a dominant

strategy for any agent to sell, after the first round of IESDS. In this way we can pin

down θ1, θ2,..., but for some finite n, θn cannot exist, because otherwise there would be a

solution to g(θ;N) = t, which is equal to limn→∞ θn. That violates the assumption that

t > maxθ′ g(θ′). Therefore, after finite rounds of IESDS, it would be a dominant strategy

for any agent to sell.

3.2 Profit Maximization for Principal

Now, suppose we only consider the range of t such that {θ : g(θ;N) = t} 6= ∅. Define

h(t) = min{θ : g(θ;N) = t}, then the principal’s problem is

maxt V (h(t);N)−NF (h(t))t

Consider a range of t, [t1, t2], where h(t) is continuous. It implies that h(t) is bijective

between [t1, t2] and [h(t1), h(t2)], the latter of which I denote by [θ1, θ2]. Then the problem

on [t1, t2] becomes

maxθ∈[θ1,θ2] V (θ;N)−NF (θ)g(θ;N)

First it is quite clear that the optimal contract exists in this constrained problem, since it

is basically finding the maximum of a continuous function on a compact set. Then, even

though g(θ;N) can take a quite irregular shape, as long as we can transform the choice

set of t into the choice set of θ, which is a finite union of disjoint compact intervals, the

optimal contract must exist.

In particular, we may be interested in the conditions under which the principal offers

a high enough price to buy out every agent, regardless of their type. I first specify the set

9



of regularity conditions, which I denote as condition R, and then show that it is sufficient

for an optimal contract with a sufficiently high price.

Definition 1. Let π(θ) = V (θ;N)−NF (θ)g(θ;N). The model is said to satisfy condition

R if

(1) π(θ) > 0 for some θ;

(2) g(θ;N) is strictly concave;

(3) v(n) is convex: v(n)
n is increasing in n.

(4) f(θ)
F (θ)g(θ;N) is decreasing wherever g(θ;N) is increasing;

(5) f(θ)
F (θ)(V̂ (θ;N − 1) − V (θ;N − 1)) is increasing wherever g(θ;N) is increasing, with

v̂(n) = v(n+ 1).

Conditions (1)-(2) do not have much implications. (3) indicates that the marginal value

of acquiring more shares for the principal is increasing in the number of shares already

acquired. (4) can be treated as requiring the distribution of types to be sensitive enough

to an increment in t: when f(θ)
F (θ) decreases at a relatively higher rate whenever g(θ;N)

increases, by raising t the principal would be able to capture a relatively larger proportion

of the type of agents to accept the contract. On the other hand, (5) is a condition on the

principal’s revenue structure, which can be interpreted as v(n) being ”convex enough” in

the sense that expanding the range of types to sell in equilibrium brings about a significant

increment in the expected realized value. A straight forward example of an environment

satisfying condition R is θ ∼ iidU [0, 1], u(θ;N − n) = (N − n)θ, v(n) = v > 0 if n = N

and 0 otherwise, and finally N ≥ 3.

Theorem 2. Let θ̃ = arg maxθ g(θ;N).

a. For the principal, the minimum total payment to buy out all the agents regardless of

their type is Ng(θ̃;N).

b. Assume condition R. The unique optimal contract for the principal is t = g(θ̃;N), and

in equilibrium each agent sells with probability one, regardless of their type draws.
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Proof. a. On one hand, if the principal sets t to be less than g(θ̃;N), it is clear that the

equilibrium cutoff θ∗ is strictly less than θ, which implies that there are types of agents

that would not sell to the principal in equilibrium. Thus the principal would need to set

t ≥ g(θ̃;N) if she were to buy out the agents without any risk. On the other hand, we

know from Corollary 1 that t = g(θ̃;N) would indeed enable the principal to buy out every

agent regardless of their type.

b. First, from (2) we know that θ̃ is unique. If the principal does not buy out each

agent of every possible type, essentially she solves

max
θ∈[0,θ̃] π(θ)

and we have

π′(θ) = −N(1− F (θ))N−1f(θ)v(0)

+

N−1∑
n=1

N !

n!(N − n)!
f(θ)(nF (θ)n−1(1− F (θ))N−n − (N − n)F (θ)n(1− F (θ))N−n−1)v(n)

+NF (θ)N−1f(θ)v(N)−N(F (θ)g′(θ;N) + f(θ)g(θ;N))

= NF (θ)(
f(θ)

F (θ)
(V̂ (θ;N − 1)− V (θ;N − 1))− g′(θ;N)− f(θ)

F (θ)
g(θ;N))

By (2)(4)(5) we know that the expression ( f(θ)F (θ)(V̂ (θ;N − 1) − V (θ;N − 1)) − g′(θ;N) −
f(θ)
F (θ)g(θ;N)) is increasing in θ. Then as π′(θ) < 0 for sufficiently small θ, by (1) we know

that there is a unique θ′ such that π′(θ′) = 0, where π′(θ) < 0 for θ < θ′ and π′(θ) > 0

for θ > θ′, and that t = g(0;N) = u(0;N) is never optimal. Since now the optimal choice

for the principal is a bang-bang solution, we can conclude that the unique optimal price

is t = g(θ̃;N). Finally, we compare the profit of this pricing scheme and one where the

principal buys out everyone. From Corollary 1, the minimum price that the principal

needs to pay to buy out each type of agent with probability one is also t = g(θ̃;N) at the
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limit. And by (3),

v(N)−Nt ≥ F (θ̃)v(N)−NF (θ̃)t

=

N∑
n=0

N !

n!(N − n)!
F (θ̃)n(1− F (θ̃))N−1−n

v(N)

N
−NF (θ̃)t

> V (θ̃;N)−NF (θ̃)t

> 0

the optimal contract is the one where each agent sells with probability 1, regardless of

their type.

Below I provide two examples, as illustration of the optimal single-price contract. The

first one satisfies condition R; in the second one, condition R is violated but the optimal

contract can still be explicitly derived by the first order condition. However, now the

principal may have to make ”unnecessary”’ payments in equilibrium. Without loss of

generality, for all the examples in this paper I would use the following valuation structure

for the principal:

v(n) =

 v, if n = N

0, otherwise

Example 1. Assume that θ ∈ [0, 1], F (θ) = θ, u(θ;N − n) = (N − n)θ, N ≥ 3. Then

g(θ;N) = θ((N − 1)(1− θ) + 1)

= Nθ − (N − 1)θ2

θ̃ =
N

2N − 1

The optimal single-price contract is characterized by

t∗ =
N2

4(N − 1)

and her maximized profit is

π∗ = v − N3

4(N − 1)
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Figure 2: Illustration for Example 1

Example 2. Assume that θ ∈ [0, 1], F (θ) = θ, u(θ;N − n) = (N − n)θ2, N = 2, v = 2.

Then

g(θ;N) = 2θ2 − θ3

which is increasing on [0, 1]. And

R′(θ) = 2θ(4θ2 − 6θ + 2)

= 2θ(4θ − 2)(θ − 1)

Therefore if the principal does not buy out every type of agent, her optimal strategy is

to set t = g(12) = 3
8 , and her expected profit is 1

8 . If she buys out every type of agent,

then t = g(1) = 1, and her profit is 0. Therefore the optimal contract is t = 3
8 and the

probability of the principal making an ”unnecessary” payment is 1
2 .

4 Contingent Contract

Based on the results for the single-price contract, now we can take one step further and

allow the principal to propose a contingent contract to each agent. By symmetry of the
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problem, this contract is first anonymous, i.e. the contract is independent of the identities

of agents; it’s also a take-it-or-leave-it offer without further complication. The difference

between this generalized contract and the one described in the previous section is that,

the principal can now condition the payment to any agent who accepts on the number of

accepting agent (again since the agents are homogeneous ex ante, WOLOG we don’t have

to consider the agents’ identities).

Formally, the contract terms include a series of possible payments {tn}, n = 0, 1, ..., N−

1 where the subscript denotes the number of agents, not including the agent being offered,

who turn out to accept their contracts. For instance, t2 denotes the payment that the

agent would get if there are two other agents accepting their offers, so the total number

of accepting agents would be 3.

4.1 Equilibrium among Agents

I adopt the same equilibrium concept as defined in the last section. To reiterate, the

principal is taking the most conservative view and is assuming the ”worst” equilibrium to

emerge. Given a cutoff rule θ∗, which means that an agent would accept the contract and

sell his share of property to the principal if and only if his type θ ≤ θ∗, define

t(θ∗;N) = E[tn|θ∗]

=

N−1∑
n=0

(N − 1)!

n!(N − 1− n)!
F (θ∗)n(1− F (θ∗))N−1−ntn

Essentially, t(θ∗;N) denotes the agent’s expected payoff if he accepts the contract, and

the equilibrium is characterized by the equation

g(θ∗;N) = t(θ∗;N)

by the argument provided in the last section.

As it turns out, there does not exist a parallel result to Theorem 1 in the case of

contingent contract, the reason being that the technique of constructing a sequence {θn}

is no longer valid, due to the possibility that t(θ;N) takes different values on different θ’s.

However, as the following result shows, there is a particular type of contingent contract,
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which enables the principal to set any θ∗ ∈ [0, θ] as the equilibrium cutoff. Moreover,

the resulting equilibrium is even stronger than previously defined: under this specific

contingent contract we obtain a dominant strategy equilibrium.

Theorem 3. Fix θ∗ ∈ [0, θ]. Let tn = u(θ∗;N − n), then

a. θ∗ is the unique Baysian Nash equilibrium cutoff.

b. In equilibrium, accepting is a strictly dominant strategy for type θ < θ∗, and rejection

is a strictly dominant strategy for type θ > θ∗.

Proof. a. Note that first by definition of t(θ;N) and g(θ;N), we know that g(θ∗;N) =

t(θ∗;N), and thus θ∗ is indeed an equilibrium cutoff in this payment scheme. To show

uniqueness, simply observe that

t(θ;N)− g(θ;N) =

N−1∑
n=0

(N − 1)!

n!(N − 1− n)!
F (θ∗)n(1− F (θ∗))N−1−n(u(θ∗;N − n)− u(θ;N − n))

The above expression is strictly positive if and only if θ < θ∗, and strictly negative if and

only if θ > θ∗. Therefore, there can be only one solution to the equation g(θ;N) = t(θ;N).

b. For any agent of type θ, given that n other agents accept the contract, if he accepts

the contract he gets tn = u(θ∗;N − n), while if he rejects he gets u(θ;N − n). It is then

clear that ∀θ < θ∗, it is a dominant strategy for the agent to accept, while ∀θ > θ∗ it is a

dominant strategy for the agent to reject.

In fact, the above proof applies to an arbitrary continuous joint distribution function

F (θ1, ..., θN ), where the agents’ types may be correlated.

Corollary 2. Given any continuous joint distribution function F (θ1, ..., θN ), θi ∈ [0, θ]

∀i, the principal can implement any θ∗ ∈ [0, θ] as the unique equilibrium cutoff by a strictly

dominant strategy Nash equilibrium.

The contingent contract as specified above brings about two advantages. First, we now

have only one intersection of g(θ;N) and t(θ;N), which represents a dominant strategy

Baysian Nash equilibrium, i.e. we get full implementation in this case. Moreover, since

now t(θ;N) can be a non-constant function (as shown in the figure below), we do not have

15



to limit our attention to the increasing part of g(θ;N) when we consider the principal’s

profit maximization problem, which implies intuitively that the principal is better off

with the option of writing a contingent contract. In the next subsection I formalize this

argument.

Figure 3: Non-constant Expected Payment in Contingent Contract

4.2 Profit Maximization for Principal

With the option of contingent contract, the principal is less constrained for profit maxi-

mization, thus it is conceivable that the principal is probably going to set t(θ;N) differently

from the restricted case of single-price contract.. As the next result shows, the principal

does select a different equilibrium in the optimal contingent contract.

Theorem 4. a. The principal needs to pay at least Nu(θ; 1) to buy out all the agents,

regardless of their type.

b. Assume condition R, then the optimal contract for principal is

tn = u(θ;N − n)

The induced equilibrium is that each agent sells to the principal, regardless of their type.
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Proof. a. To buy out each agent regardless of type, the principal pays each agent tN−1 in

equilibrium. Since an agent would get u(θ; 1) if he rejects, we know that tN−1 ≥ u(θ; 1).

Note that by Theorem 3, it can be achieved that {θ ∈ [0, θ) : t(θ;N) = g(θ;N)} = ∅, thus

there indeed exists an equilibrium among agents such that any type of agent sells to the

principal for payment tN−1 = u(θ; 1).

b. Suppose the principal does not buy out each agent for sure regardless of their type.

The principal solves

max
θ∈[0,θ]

V (θ;N)−Ng(θ)F (θ)

From Theorem 2, we know that θ̃ = arg max g(θ) dominates any θ ∈ [0, θ̃), thus the

problem essentially becomes

max
θ∈[θ̃,θ]

V (θ;N)−Ng(θ)F (θ)

But then from previous analysis we also know that

v(N)−Ng(θ;N) > V (θ;N)−Ng(θ;N)F (θ)

if

V (θ;N)−Ng(θ;N)F (θ) > 0

Thus the problem for principal can be further relaxed into

max
θ∈[θ̃,θ]

v(N)−Ng(θ)

whose solution is θ given condition R. Finally, by Theorem 3, θ is an achievable solution to

the relaxed problem, which implies that the optimal contract is the one specified above.

Now we may as well take a second look at Example 1. The principal is strictly better

off with the option of a contingent contract.

Example 3. Assume the same parameter values as in Example 1. Allowing for contingent

contracts, at optimum the principal sets

tn = (N − n)

17



while in equilibrium she pays 1 to each agent. Thus her maximized profit is

π∗ = v −N

which is strictly higher than v− N3

4(N−1) , the maximized profit under the optimal single-price

contract, if N ≥ 3.

An illustration of comparison between the equilibrium under the optimal contract for

principal is given below. The left hand side shows the single-price contract while the

right hand side shows the contingent contract. As can be easily seen from the graph, the

contingent contract dominates the single-price one from the principal’s point of view; in

fact, under condition R, the principal is strictly better off with the option of writing a

contingent contract.

Figure 4: Comparison between Two Contracts

Corollary 3. Assume condition R, then the principal’s payoff is strictly higher under the

optimal contingent contract than the single-price one.

In general, without imposing much restriction on g, we can derive a sufficient and nec-

essary condition for the strict dominance of contingent contract over single-price contract,

as long as {tn} can be chosen freely:

Corollary 4. Let π∗ denote the principal’s expected payoff under the optimal single-price

contract. The principal’s expected payoff is strictly higher under the optimal contingent

contract than the single-price one if and only if ∃ θ′ such that V (θ′;N)−NF (θ′)g(θ′;N) >

π∗.
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The previous analysis implies that, though simple in contract terms, the above contin-

gent contract is rather powerful in the sense that it enables the principal to select any θ∗

as an equilibrium payoff, and implement it with a strictly dominant strategy equilibrium.

It is then reasonable to conceive that this particular contract may be optimal within some

class of general mechanisms. The following section formally proves this conjecture.

5 General Commitment Scheme

Consider the following mechanism Γ:

Step 1. The principal proposes a payment scheme {ti({mj}Nj=1)}Ni=1, where ti denotes the

payment to agent i and mj denotes the message sent by agent j. The message space,

M1, must satisfy R ∈M where R denotes the option of rejecting the principal’s proposal;

the payment function must satisfy ti(R,m−i) ≥ 0 by the individual rationality for agent

i. In order to identify the optimal mechanism for the principal, it is then without loss of

generality to focus our attention only on the class of mechanisms where ti(R,m−i) = 0 ∀i.

Step 2. For any agent i, he chooses a message mi ∈ M to report. He sells his share of

property to the principal for ti({mj}Nj=1) if and only if mi 6= R.

To be coherent with the previous analysis, the equilibrium notion I adopt here is

the Baysian Nash equilibrium. Given {ti({mj}Nj=1)}Ni=1, an equilibrium is a mapping

m∗(θ) : [0, θ] −→M such that

m∗(θ) = arg maxm6=R E[ti(m,m
∗(θ−i))], if maxm6=R E[ti(m,m

∗(θ−i))] ≥ E[u(θ;N − n)|m∗]

R, otherwise

First we can show the following by a standard Revelation Principle argument:

Lemma 2. Any equilibrium in Γ can be implemented as an equilibrium in a direct rev-

elation mechanism Γ′ satisfying individual rationality and incentive compatibility, where

M = [0, θ] ∪ {R} and m∗(θ) = θ if m∗ 6= R.

1Due to the ex ante homogeneity of agents by assumption, I only consider the symmetric case. The

same principle applies to the equilibrium notion defined below.
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With the above lemma, we can constrain the analysis within the scope of incentive

compatible direct revelation mechanisms, denoted by Γ′. Individual rationallity is trivially

satisfied in any Γ′ by the inclusion of R in M , thus without loss of generality I supress

the notion of individual rationality in the analysis below. From incentive compatibility we

obtain a second lemma:

Lemma 3. ∀Γ′, if m∗(θ′) = θ′ for some θ′, then

(1) m∗(θ) = θ ∀θ ≤ θ′

(2) E[ti(θ, θ−i)] = E[ti(θ
′, θ−i)] ∀θ ≤ θ′.

Proof. From m∗(θ′) = θ′ we know that E[ti(θ
′, θ−i)] ≥ E[u(θ′;n)|m∗], which implies that

E[ti(θ
′, θ−i)] > E[u(θ;N − n)|m∗] ∀θ ≤ θ′. Note that for agent i of type θ < θ′, he could

at least get E[ti(θ
′, θ−i)] by reporting θ′, thus R is strictly dominated, and (1) is proved.

Now, suppose E[ti(θ, θ−i)] > E[ti(θ
′, θ−i)] for some θ < θ′, then by choosing m(θ′) = θ

the agent gets a strictly higher payoff, which violates incentive compatibility. A similar

argument shows that E[ti(θ, θ−i)] < E[ti(θ
′, θ−i)] would also violate incentive compatibility.

Therefore, (2) holds as well.

The next lemma, as a direct result of Lemma 5, enables us to characterize an equilib-

rium in Γ′ as a cutoff θ∗:

Lemma 4. For any equilibrium in Γ′, there exists a cutoff θ∗ such that

m∗(θ) =

 θ, ∀θ ≤ θ∗

R, otherwise

Moreover, E[ti(θ
∗, θ−i)] = g(θ∗;N).

Proof. The first claim follows directly from Lemma 5. For the second one, note that with

m∗(θ) thus specified, E[u(θ;N − n)|m∗] = U(θ; θ∗, N). Therefore

E[ti(θ
∗, θ−i)] ≥ U(θ∗; θ∗, N)

E[ti(θ
∗, θ−i)] < U(θ; θ∗, N) ∀θ > θ∗

which then implies E[ti(θ
∗, θ−i)] = g(θ∗;N) by the continuity of U(θ; θ∗, N).
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Now we can show that among all general mechanisms Γ, the contingent contract de-

scribed in section 4 is optimal for the principal.

Theorem 5. Let G denote the set of all Γ’s satisfying the criteria described before, and let

Γ∗ denote the contingent contract described in section 4. Let R(Γ) denote the principal’s

expected payoff from mechanism Γ, then R(Γ∗) ≥ R(Γ) ∀Γ ∈ G.

Proof. Note that Γ∗ is equivalent to a direct revelation mechanism where

ti =

 u(θ∗, N − n), if mi 6= R

0, otherwise

where n = ]{i : ti 6= R}. By Lemma 4, it suffices to prove the result within G′ ⊂ G, the

set of all incentive compatible direct revelation mechanisms. Then by Lemmas 5 and 6,

we can write the principal’s relaxed problem as

max
θ∈[0,θ]

V (θ;N)−NF (θ)g(θ;N)

This problem is relaxed because it is not proved yet that for each θ ∈ [0, θ] there exists

Γ′ ∈ G′ such that θ is the equilibrium cutoff.

First, by continuity of the maximand and compactness of [0, θ], the optimal θ exists

in the relaxed problem. Secondly, by Theorem 3, we know that Γ∗ enables the principal

to choose any θ ∈ [0, θ] as the equilibrium cutoff. Therefore, the optimal cutoff in Γ∗

solves the relaxed problem, which implies that Γ∗ is indeed the optimal mechanism for the

principal in G.

Theorem 5 provides a somehow surprising assertion: as long as the information struc-

ture is independent and ex-ante homogeneous, the principal can fully implement any sym-

metric Baysian Nash equilibrium using a straight forward contingent contract as described

in Section 4.

6 Conclusion

I have analyzed the optimal contract design problem faced by the principal, when she

is negotiating with a group of agents in the presence of externalities and asymmetric
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information. In the model setting of this paper, the optimal contract exists in both

contexts, and condition R characterizes a set of conditions sufficient for the principal to

buy out each agent regardless of their types. In applications, this can be viewed as the

characteristics of the information and payoff structure such that a hostile firm offers a

substantially high takeover bid or tender offer premium, or a defendant offers a highly

attractive amount of compensation in order for a settlement out of court.

Also, the intuition raised in the introduction section is confirmed. Due to externalities,

the principal tends to make a considerably higher payment to an agent than when dealing

with him independently. Indeed, if the agents hold their shares separately, each would get

utility u(θ; 1) as an outside option, thus to persuade the agent the principal needs to offer

at most u(θ; 1); but with externalities, in equilibrium the principal would in general has

to pay a higher amount to the agents that accept, as in the case of single-price contract.

Nevertheless, the optimal contingent contract attenuates this effect, as can be seen from

the optimal contingent contract under condition R, where the principal pays exactly u(θ; 1)

to each agent. In terms of asymmetric information, if we compare the expected payment

to the accepting agents and the status quo utility they would get had there not been this

project, u(θ;N), it is clear that asymmetric information benefits agents with low θ and

harms those with high θ. In fact, the effect of information asymmetry can be decomposed

into two: on one hand, the principal has to make a sufficiently high offer as the outside

option plus informational rent; on the other hand, the principal does not need to make the

offer too high as long as it is sufficient to make agents believe that others probably would

accept. The first effect is constant given the types of contract that the principal is allowed

to choose from. As for the second, it forces all agents with type below the equilibrium

cutoff to accept the offer in fear that others may accept anyway, but for higher types they

have to give up more than they could receive in expectation.

One among a few limitations of this model is the assumption of the principal’s full

commitment power, as present in a wide range of mechanism design literature. After all, it

is not always incentive compatible for the principal to commit to his proposed contract: for

example, in the case that the principal has to acquire all the shares to realize her valuation,

if any one of the agents rejects in the end, the principal would rather abandon the project

22



without making unnecessary payments. To practically solve this problem, one possibility

is to exogenously impose a sufficiently high cost of default, such as the requirement of

notarizing the contract via a legal process. Another way to get over this lies in the ability

of verification of the agents: either the contract is publicly observable, or the agents can

costlessly verify the outcome. In the apartment building conversion project, for example,

the agents can easily tell if the principal has paid according to the number of accepting

agents by counting the number of empty apartments in the building afterwards. Another

issue is that the assumption of a one-shot game may be over-simplifying. If the principal

does not end up getting a satisfactory number of shares, it is easily conceivable that she

would make an attempt to continue bargaining with the remaining agents. Therefore,

application of this model lies primarily in strategic situations where it is rather costly to

organize a negotiation process, or the buyout project has to be completed within a very

limited period of time.

There are a few directions for future research that are worth pursuing. First, within the

scope of this model, one can investigate the explicit form and properties of the optimal

contract when the externalities are negative, as in the case of merger among firms in

Cournot competition. The condition inducing the optimal contract to achieve exact or

asymptotic efficiency is also a non-trivial issue. Secondly, as mentioned above, analysis

under different protocols would extend the application of the basic idea. One may be

inclined to consider (1) sequential bargaining with discount factor; (2) divide-and-conquer

strategy by the principal; (3) contract offered by one or a group of agents; (4) the possibility

of coordination among agents, etc. Last but not least, it is also interesting to analyze the

problem assuming noisy observations, meaning that either the principal’s offer and/or the

agents’ decision can only be observed with some noise, and see whether such perturbation

creates additional incentive problems, whether it is benefitial for the principal, and whether

there exists a convergence result.
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