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Abstract

A network determines how individuals may interact with each other as well as

how agents may learn about each other’s behavior. However, the theoretical liter-

ature often regards network formation, network games and network monitoring as

isolated problems. In this paper, we propose a framework that unifies these im-

portant functions of a network. An agent in our model repeatedly chooses whom

to link with, and in the network that thus forms, what actions to take in every

network-dependent game. We find strong interdependency between the equilibrium

networks and the equilibrium actions, and that endogenously formed networks with

associated action profiles often yield a higher social welfare than exogenously pre-

scribed ones. In addition, we emphasize the importance of an informative public

monitoring structure, and show that without such monitoring cooperation may fail

in a sparse network even if agents are very patient.
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1 Introduction

Networks have an ever-growing influence on various social and economic interactions,

including trade, public good provision, friendship, information sharing, etc. In a network,

agents are linked via relation such as business partnership, social activities and user

protocol, and an agent’s well being is affected by not only how these links are structured

– which other agents constitute her “neighborhood” – but also what actions are taken

by the other party of each relevant link. For example, in a business network in the wine

industry consisting of wineries, distributors and sales brokers, the profit of a participant

depends on both the group of other businesses it establishes partnership with, as well as

the terms of each contract it signs. A large and growing empirical literature (e.g. Karlan

et al.[26], Jackson et al.[21], Ambrus et al.[2]) emphasizes the importance of networks on

individual behavior and social outcomes. From the theoretical perspective, a network

serves two purposes in each of these strategic environments. On one hand, it is a platform

for interaction since being in a particular neighborhood is a prerequisite for interacting

with each agent in this neighborhood. On the other hand, it is a channel for information

since detailed information of both links and actions in unfamiliar neighborhoods is often

limited, if not unavailable at all. In addition, the structure of a network itself is often the

result of strategic decisions by the agents, who would weigh the benefit and cost of every

feasible link before forming one. In this paper, we develop a model to unify these crucial

features of a network. We would like to understand how the network topology as well as

agents’ strategic behavior are shaped by the interplay between network formation and

network games. Also, we would like to evaluate the implication of different environments

– different networks, different games or different monitoring structures – on social welfare.

The existing approaches on analyzing networks and games played on a network are

often constrained by focusing on only one aspect of the whole environment. Typical

models include network formation without associated action space (e.g. Jackson and

Wolinsky[23], Bala and Goyal[3], Watts[34]), games played on a fixed network (e.g. Ga-

leotti et al.[15], Ballester et al.[4], Bramoulle and Kranton[5]), networks as pure infor-

mation exchange devices (e.g. Ali and Miller[1], Wolitzky[35]), etc. This paper connects

the ideas behind these studies. From the perspective of network formation, this paper is

the first to introduce two important features of a network: determining the underlying

games agents play and shaping the information agents receive. From the perspective of

network games, this paper contributes to the literature by making network formation

part of the agents’ strategic choices and contrasting the results to those with exogenous

network formation.
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In our model, a finite number of agents make strategic decisions on a discrete and

infinite time line. In each period there are two stages: network formation and interaction.

In the first stage, agents form or change the current network, where links are established

by bilateral consent and severed by unilateral intent. The formation or maintenance of

a link is costly while the severance of one is not. In the second stage, a game is played

on every complete sub-network, and an agent’s payoff in the current period is the sum

of payoffs from each game in the second stage less her cost in the first stage. The agents

are foresighted and discount their future payoffs by a given discount factor. In terms of

information, an agent knows every action of every player in every game she plays, but

has no knowledge of actions taken in any other game. This implies that she knows every

complete sub-network involving herself. The rest of her knowledge on the network is

given by a monitoring structure, which is a function of the network formation history

that produces a public signal. The monitoring structure may represent various degrees

of information, ranging from full knowledge (perfectly revealing the network formation

history) to no additional knowledge (independent from the network formation history).

Before introducing the formal results, we would like to emphasize two interesting

features of this framework. First, the incentive to form or maintain a certain network

depends on the games to be played. For instance, consider a simple environment with

three agents and consider the game played on the triangle network (full clique). If this

game may yield a significantly higher payoff to every agent than in every other game,

the agents have strong incentives to maintain the corresponding network over time. If

on the contrary this game can only result in a largely negative payoff for every agent,

the network can never be sustained. Second, the level of coordination in games does

not only rely on the discount factor as in the classical repeated game literature, but

is greatly affected by the network topology as well. For example, consider a series of

prisoners’ dilemma played on a wheel network (a circle of links). Each game is played

by a pair of linked agents. Suppose that the monitoring structure is very uninformative

about the formation history, i.e. it is unlikely for an agent to know about link formation

or severance outside the set of complete sub-networks she is in. Then any deviation

from a given action profile will only trigger a punishment against the deviator after a

long time, since any reaction can only affect one new pair of agents at a time on a wheel

network. As a result, when the wheel is sufficiently large, full cooperation is impossible

in any equilibrium.

Following the ideas behind the above examples, our main results are three-fold. We

focus on equilibria that feature long-run persistence of a network and an associated

action profile, and discuss their properties and welfare implications. First, we prove a
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Convergence Theorem characterizing the set of network and action combinations that

can be supported in equilibrium when agents are sufficiently patient. This result offers

a novel and more realistic view on networks and network games than the classical Folk

Theorem, in the sense that it highlights how the network topology affects the sustain-

ability of an action profile in a given game. For instance, even if an agent receives a

negative payoff in one of the games she plays, she may just put up with this loss as long

as it can be compensated from positive payoffs in other games; the network determines

how she ends up playing all these games and how she gets punished by other agents if she

does not follow a prescribed action in each game. The range of action profiles that can

be sustained, even on the same network, depends greatly on the monitoring structure.

Second, we discuss welfare consequences by connecting network formation and network

games. In particular, we show that in generic cases our model with strategic network

formation produces a higher maximum social welfare than a model with exogenous net-

work formation. This result suggests that equilibrium outcomes get closer to social

efficiency in a more tolerant environment where individuals may establish relationship

freely, rather than a controlled environment that heavily regulates how individuals are

inter-connected. Third, we generalize the second example above to argue that when the

monitoring structure is not informative, cooperation can never be sustained in a network

that is too sparse. We believe that this result opens another dimension – aside from the

discount factor – for studying cooperative behavior among selfish and strategic agents.

It emphasizes that how close or how distant agents are when making their cooperation

decisions must be taken into account.

The remainder of the paper is organized as follows: Section 2 reviews related liter-

ature. Section 3 introduces the model. Section 4 presents the main results. Section 5

concludes the paper.

2 Literature Review

The theoretical literature related to network formation and games played on networks

can be divided into three main caterogies.

First, there is a large and growing literature on modeling network formation as a

result of strategic choice. In general, a link between two agents is viewed as access

to valuable resources possessed by one another, and hence the network structure fully

determines the payoff of each agent. This literature starts with static models with

homogeneous agents by Jackson and Wolinsky[23] and Bala and Goyal[3], which are then

developed to include additional features such as agent heterogeneity and endogenous
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resource production (see e.g. Galeotti[13], Galeotti et al.[16], Haller and Sarangi[20],

Galeotti and Goyal[14]). The main message from these works is that particular network

topologies, such as the star and the clique, can be identified as strongly efficient and/or

predicted to emerge in the unique equilibrium.

An important strand of literature that stems from Jackson and Wolinsky[23]’s frame-

work is its sequential or dynamic version with myopic agents, notable works including

Johnson and Gilles[24], Deroian[8], Watts[34], Jackson and Watts[22], and Song and

van der Schaar[30]. There also has been several approaches on network formation with

foresighted agents, for instance Dutta et al.[9] and Song and van der Schaar2[29]. In

these models, the networks predicted by static frameworks are usually not persistent

over time, or there are many other network topologies that can be sustained in equilib-

rium. In the current paper, our model is also a dynamic one but is different from the

above cited ones in a fundamental aspect: apart from network formation, we introduce

an associated action space. As a result, the network topology is no longer merely a set of

pairwise access, but a guide of what games are played by which agents. As we shall see in

the analysis, this is not only a more realistic setting – in many applications, individuals

or firms interact in a much more complex way than simply connect to one another and

collect fixed payoffs – but the actions that may be undertaken and their consequences in

even one single game among many can have a significant impact on network formation.

Second, this paper relates to the theoretical study of games played on a fixed net-

work (Galeotti and Vega-Redondo[17], Ballester et al.[4], Sundararajan[32], Galeotti et

al.[15]), with applications such as consumers networks (Galeotti[12]), experimentation

and innovation (Bramoulle and Kranton[5]) and R&D networks (Goyal and Moraga-

Gonzalez[19]). These works typically focus on the relation between network topology

and equilibrium behavior in games, and a number of them also characterize the network

topologies that maximize social welfare. Our paper shares the emphasis of networks’

impact on sustainable actions such as cooperation behavior in a generalized prisoners’

dilemma, and we also derive from our model conditions under which a Pareto improve-

ment may be sustained in equilibrium. Most importantly, in this paper we ask another

fundamental question: how does the underlying network topology comes into being?

Unlike the literature on network games, we believe that forming a network and playing

games on a network can be better understood as a unified process of strategic interac-

tion, instead of the former being governed by an exogenous stochastic rule and only the

latter being strategic. This view is supported by the applications of social network and

trade network, in which the conduct of individuals or firms after relationships are built

affect decisions on whether to form these relationships in the first place.
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Third, our analysis the monitoring structure’s effect on sustainable networks and ac-

tions is inspired by a literature on community monitoring in repeated games. Renowned

early papers such as Kandori[25] and Ellison[10] present Folk Theorems which show

that cooperation can be enforced even if agents are not perfectly informed about the

whole action history. The key argument is that when every possible deviation triggers

a “contagion” of punishment that will soon spread to the whole community, deviation

is never optimal even when the deviator may not be identified. This idea is developed

by Takahashi[33], Deb[7] and Sugaya and Takahashi[31], but their studies have not in-

troduced networks as an underlying structure for monitoring. In two recent papers, Ali

and Miller[1] and Wolitzky[35], network topologies are explicitly imposed as a moni-

toring device: an agent only observes the actions taken by her immediate neighbors.

Part of our monitoring structure resembles this approach in the sense that agents only

have local observation of actions, i.e. they only observe actions taken in the complete

sub-networks that involve themselves. However, since network formation is also endoge-

nous, our monitoring structure includes (possibly imperfect) monitoring on the network

formation history as well. How precisely this history is revealed to the agents affects

the sustainable network and action profile significantly. Our result is in stark contrast

to much of the literature: we show that in some networks cooperation can never be

sustained even with contagion strategy.

Apart from the theoretical trend of thought, an active empirical literature studies

the impact of network structure on sustaining cooperation in various markets (Karlan et

al.[26], Jackson et al.[21], Ambrus et al.[2]) and topological properties of real networks

in market data and experiments (Falk and Kosfeld[11], Corbae and Duffy[6], Goeree

et al.[18], Mele[28], Leung[27]). Two important messages are conveyed in these works.

First, an individual’s position in a network – how central she is, whether she is the

sole connector between two groups, etc. – largely determines the cooperation level she

undertakes. Second, equilibrium networks predicted by much of the theoretical literature

on network formation only account for a very small fraction of real networks. Our

results are consistent with these qualitative assertions, but we will leave the quantitative

development of our model for future research.

3 Model

3.1 Network Topology

Consider a group of agents I = {1, 2, · · · , N}. A network is denoted by g ⊂ {ij : i, j ∈
I, i 6= j}. ij is called a link between agents i and j. We assume throughout that links

6



are undirected, in the sense that we do not specify whether link ij points from i to j or

vice versa. Let Ni(g) = {j : ij ∈ g} and let Q(g) = {i|∃j s.t. ij ∈ g}.
We say that agents i and j are connected, denoted i

g↔ j, if there exist j1, j2, ..., jn

for some n such that ij1, j1j2, ..., jnj ∈ g. In the remainder of this paper, we will only

discuss connected networks, i.e. networks in which every two agents are connected. A

network g is complete if for all i, j such that i
g↔ j, we have ij ∈ g. For agent i, let

Mi(g) denote the set of complete sub-networks of g that involve i: Mi(g) = {g′ ⊂
g : g′ is complete and i ∈ Q(g′)}. Let M̄i(g) denote the set of maximal complete sub-

networks of g that involves i. Let Mi denote the set of all possible complete networks

that involve i.

3.2 The Game

Time is discrete and infinite: t = 1, 2, · · · . In every period t, the agents play the following

two-stage game.

Stage 1: network formation. The agents simultaneously decide whether to make

a costly effort to link with one another, and links are formed or maintained by mutual

consent. Formally, each agent i chooses lti = {ltij}j 6=i where ltij ∈ {0, 1}, and a link is

formed or maintained between i and j if and only if ltij = ltji = 1. ltij costs c ≥ 0 for

agent i if link ij is formed or maintained, and incurs no cost otherwise. Given a profile

of linking decisions lt = {lti}i∈I , let g(lt) denote the network that is formed, and let

φt := {g(lt)}tτ=1 denote a formation history or a formation path up to time t, with the

initial condition that φ0 = (∅,∅). Let Φ = {φt : t ∈ N} denote the set of all possible

formation histories.

At the end of stage 1, the agents observe a public signal which is generated by a

signal device y : Φ→ Y , where Y is the set of signal realizations. We assume that y and

Y are common knowledge. We sometimes refer to y as the monitoring structure in the

remainder of this paper.

Stage 2: interaction. For network g(lt) formed in the network formation stage,

a (potentially different) game is played on every non-empty complete sub-network g′ ⊂
g(lt), denoted Γ(g′). The players of Γ(g′) are the agents in Q(g′). For every i ∈ Q(g′),

let Ai(g
′) denote the set of available actions for i in Γ(g′), and let ai(g

′) denote an

arbitrary action. The available action set of agent i for the entire stage 2 is denoted

Ai = ×g′∈Mi
Ai(g

′). We assume that Ai is finite.

At the beginning of stage 2, agent i knows Mi(g(lt)). At the end of stage 2, agent i

knows every action of every agent in every game she played in stage 2. Let κti ⊂ {atj : j ∈
I,g′ is complete, ij ∈ g′, atj ∈ Aj(g′)} denote i’s knowledge on action history in period
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t (note that κti is sufficient information for Mi(g(lt))), and let K = {{κτi }tτ=0 : t ∈ N}
denote the set of all possible histories of such knowledge.

It is worth noting here that we have different constructions for monitoring the net-

work formation history and the action history. Network formation is publicly monitored,

but the precision of monitoring varies from full information (y is a one-to-one mapping)

to no information (y is a fixed constant). A practical interpretation of this monitoring

technology in social networks is news media. On the other hand, actions are monitored

privately, so an agent has absolutely no information on actions taken outside the games

she has played. This assumption is realistic in most applications. Last but not least,

monitoring on actions also reveals some local information on network formation, since

what games an agent plays in a given period is determined by the current network.

Now we describe the payoffs. In Γ(g′), given an action profile a(g′) = {ai(g′)}i∈Q(g′),

i’s payoff from this game is given by a function ui(a(g′)) : ×i∈Q(g′)Ai → R. We make

the following assumption on payoffs.

Assumption 1. In any game Γ(g′), each agent i ∈ Q(g′) has a strictly dominant action

aDi (g′).

This assumption holds for many games studied in both theoretical and empirical

literature, such as prisoners’ dilemma, gift-giving game and public good provision. As

will be seen in the subsequent analysis, it is useful in constructing a straightforward

equilibrium strategy profile that sustains a prescribed network and associated actions,

under the potentially large and complex set of possible (observable) histories. We denote

the action profile for Γ(g′) in which every agent plays aDi (g′) as aD(g′).

Let ati = {ati(g′)}g′∈Mi(g(lt)) denote i’s action in the games she plays in stage 2 of

period t. Given a sequence of linking efforts l̄ = {lt}t∈N+ which generates a sequence

of networks {g(l̄t)}t∈N+ , and a sequence of actions ā = {āi}i∈I where āi = {at}t∈N+ =

{ati}t∈N+ , we let Ui(l
t, at) denote i’s payoff in period t. i’s total payoff is

Vi(l̄, ā) =
∞∑
t=1

γt−1Ui(l
t, at) =

∞∑
t=1

γt−1(
∑

g′∈Mi(g(lt))

ui(a
t(g′))−

∑
j:ij∈g(lt)

c).

In other words, agent i’s one-period payoff is the sum of payoffs from all the games she

plays less her link formation/maintenance cost, and her discounted total payoff is the

discounted sum of her infinite one-period payoff stream.

3.3 Strategy, Equilibrium and Convergence

Since an agent’s strategic decision consists of two parts – forming links and taking actions

– and she receives additional local information about the network topology in between,
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her strategy needs to be defined separately for each part. Let zti = {yτ , κτi }
t−1
τ=0 denote a

history consisting of both the realized public signals and the actions that i has observed,

and let Z denote the set of all possible histories. A (pure) strategy σi for agent i consists

of two mappings σ1i : Z → {0, 1}|I|−1 and σ2i : Z × Y × 2Mi → Ai. The first mapping

selects a subset of agents that i agrees to link with according to her observed history

before the current period, and the second selects an action profile based on the same

history and new observed information in the current period.

Our equilibrium notion below is a standard one in a history-perfect sense. The

slight divergence from the literature on repeated games is that it is neither a pure public

equilibrium nor a pure private one, since agents are informed differently about the history

of different stages.

Definition 1 (Equilibrium). A (pure strategy) equilibrium is a vector of strategies

σ∗ = (σ∗1, · · · , σ∗N ) such that: for each agent i, each stage of every period t and every

possible history of public signal and private knowledge, σ∗i maximizes agent i’s discounted

total payoff at period t given σ∗−i.

We note the existence of an equilibrium below.

Proposition 1. There exists a pure strategy equilibrium.

Proof. Every agent i always choosing lij = 0 for every j 6= i in stage 1 and playing

aDi (g′) for every complete sub-network g′ in stage 2 is an equilibrium by definition.

In this paper, we will focus on equilibria that lead to a persistent network topology

and action profile. We would like to understand what characterizes a network that can

remain stable over time, and what behavior can or cannot occur constantly on such

a network. This property is denoted as convergence of the dynamic process. Fix a

network g and a one-period action profile a = {ai(g′)}g′∈Mi(g),i∈I , and we have the

following definition:

Definition 2 (Convergence). We say that the dynamic process converges to (g, a) in

equilibrium σ∗ if there exists T ∈ N+ such that following every (finite) history of network

formation and action, according to σ∗ the network stays at g and the action profile stays

at a forever after at most T periods.

4 Results

In this section, we present our main results. We start by constructing a straightforward

strategy profile and proving Convergence Theorems that characterize the set of networks
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and associated action profiles that can be sustained with this strategy profile. Next, we

turn to welfare analysis and compare our model with one where network formation is

exogenous. Towards the end of this section we provide several representative examples

illustrating the relation between sustainable networks and sustainable actions.

4.1 Convergence Theorem with Informative Monitoring Structure

4.1.1 Informative Monitoring Structures

We explicitly construct a strategy profile that serves as a candidate for an equilibrium in

the Convergence Theorem established later. Since a strategy involves decision on links

and actions based on public signals, we first need to specify the associated monitoring

structure that is “sufficiently informative” for convergence.

Fix a network g and integerK ≥ 1. We characterize a particular monitoring structure

yg,K recursively as follows.

1. Y = {C,P}, where C represents the cooperation phase and P represents the

punishment phase.

2. y0g,K = C.

3. In period t ≥ 1: if yt−1g,K = C, we distinguish 2 cases:

– case 1: for every pair of agents ij ∈ g, aij = aji = 1 and for every pair of

agents ij /∈ g , aij = 0 or aji = 0 (or both).

– case 2: otherwise (i.e. case 1 fails for some pair of agents ij)

– In case 1, we define ŷtg,K = C and in case 2, we define ytg,K = P .

4. In period t ≥ 1, if yt−1g,K = P : we again distinguish 2 cases:

– case 1: yt−2g,K = yt−3g,K = · · · = yt−Kg,K = P

– case 2: otherwise

– In case 1, we define ytg,K = C and in case 2, ytg,K = P .

As we will see in the proof of Theorem 1 below access to the information provided by

yg,K allows the agents to divide the formation process into two phases: the cooperation

phase which continues forever if agents choose their actions in order to form or maintain

the network g, and the punishment phase that starts when agents depart from the

cooperation phase and continues for K periods. From the public signal C or P , each
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agent knows what phase she should currently be in, but not how long that phase has

lasted or how many times the same phase has occurred before.

The monitoring structure that is applicable to our Convergence Theorem can be

generalized from yg,K to a class with at least the same level of informativeness. Consider

any other signal structure ŷ with signal space Ŷ . ŷ is as informative as yg,K if there is a

mapping η : Ŷ → Y such that yg,K(φt) = η(ŷ(φt)). That is, ŷ reveals at least as much

about the history as yg,K (and perhaps more). Notice that complete information about

network formation is always as informative as yg,K , no matter what g and K are.

4.1.2 Construction of Equilibrium Strategies

Assume that the monitoring structure is as informative as yg,K , and fix a network and

a one-period action profile (g, a). First we define some concepts that are useful for

characterizing the equilibrium strategies. In an arbitrary period t, we say that there is a

deviation in network if the network formed after stage 1 is different from g, and that

there is a deviation in action if there is some agent j who plays an action different

from ai(g
′) in some complete sub-network g′ ⊂ g.

Consider the following strategy profile, denoted σ(g, a):

For every agent i:

1. In stage 1: start with the cooperation phase in period 1: choose l1ij = 1 if and

only if ij ∈ g. In t > 1, if yτ = C and κτi = {aτj : aτj = aj(g
′),g′ ∈ Mi(g)} for all

τ < t, then continue the cooperation phase.

2. Otherwise, i enters the punishment phase. Consider the first period t when i

has observed some agent deviating from the cooperation phase. If the deviation

includes a deviation in network (as signaled by yt−1 = P ), then choose ltij = 0 for

every j 6= i.

If the deviation is only a deviation in action, then choose ltij = 0 for every j 6= i

who has also observed the deviation. The identities of such j’s can be inferred from

κt−1i , and we denote the set of these agents as J . For agents in (I \J)−i, choose i’s

one-period best response in linking decisions, assuming that those agents and i will

play their dominant strategy in every complete sub-network g′ in stage 2. Note

that the set of complete sub-networks involving i at the beginning of stage 2 can

be determined to be Mi(g \ {ij : j ∈ J}), and thus this best response must exist.

Then from period t + 1 onwards, choose lij = 0 for every j 6= i. The punishment

phase ends in the first period t′ after t when yt
′−1 = C, and starting from period

t′ agent i resumes the cooperation phase, and so on.
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3. In stage 2: for every complete sub-network g′, play ai(g
′) if i is in the cooperation

phase and yt = C, and play aDi (g′) otherwise.

σ(g, a) can be interpreted as the following pattern of behavior: the agents start

by cooperating towards building a designated network and conforming to a designated

action profile. They form or maintain a link if and only if that link belongs to the

specific network g, and they take the specific action in a when playing each game on

g. Once a deviation is detected by an agent – no matter whether it is a deviation in

link or a deviation in action – the agent first severs her link with the deviator, and then

changes her behavior to playing a myopic best response. She resumes cooperation after

K periods, when the network topology is publicly known to return to g.

4.1.3 Convergence Theorem

We begin with a simple observation: for the dynamic process to converge in equilibrium,

each agent must receive a non-negative payoff in the long run.

Proposition 2. If there exists an equilibrium σ∗ where the dynamic process converges

to (g, a), then for every i ∈ I,
∑

g′∈Mi(g)
ui(a(g′))−

∑
j:ij∈g c ≥ 0.

Proof. Suppose that there exists an equilibrium where the dynamic process converges to

(g, a), and that
∑

g′∈Mi(g)
ui(a(g′))−

∑
j:ij∈g c < 0 for some i. Then on the equilibrium

path when g has been formed and will persist forever, i is always strictly better off by

deviating to a strategy in which lij = 0 always and obtaining payoff 0 thereafter. This

is a contradiction to the assumption of an equilibrium.

Our first Convergence Theorem is a partial converse to above: if the inequality is

strict for all agents, the monitoring structure is sufficiently informative (in particular if

the monitoring structure yields complete information) and agents are sufficiently patient

then our constructed strategy profile is an equilibrium in which the formation process

converges to (g, a).

Theorem 1. Suppose that (g, a) is such that
∑

g′∈Mi(g)
ui(a(g′)) −

∑
j:ij∈g c > 0 for

every i ∈ I. Then there exists integer K and a cutoff γ̄ ∈ (0, 1) such that when γ ∈ [γ̄, 1)

and the monitoring structure is as informative as yg,K , σ(g, a) is an equilibrium where

the dynamic process converges to (g, a).

Proof. We prove the result by considering a one-step deviation by every agent i, for

every possible history of public signal and action that can be observed by i. We start

with stage 2 in an arbitrary period t, and distinguish two cases.
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Case 1: i is in the punishment phase or yt = P . According to (g, a), agent i’s action

in period t does not affect any agent’s decision in the subsequent periods. Hence, playing

aDi (g′) in every complete sub-network g′ is a best response.

Case 2: i is in the cooperation phase and yt = C. Let v̄ ≥ 0 denote the largest one-

period gain that i has in any game by any one-step deviation from any action profile.

Since the number of games and the number of each agent’s actions in every game are

both finite, we know that v̄ exists. Suppose that i deviates, the difference in her payoff

from no deviation is bounded above by

v̄|Mi(g)|+ γv̄|Mi(g)| −
K+1∑
τ=2

γτ (
∑

g′∈Mi(g)

ui(a(g′))−
∑
j:ij∈g

c).

By assumption,
∑

g′∈Mi(g)
ui(a(g′)) −

∑
j:ij∈g c > 0. Then we can find integer K1

such that K1(
∑

g′∈Mi(g)
ui(a(g′)) −

∑
j:ij∈g c) > 2v̄|Mi(g)|. When K = K1 and γ is

sufficiently close to 1, no deviation is i’s best response.

Now we consider stage 1. Again we distinguish two cases.

Case 1: i is in the punishment phase. According to (g, a), every other agent is

choosing 0, so i’s linking decision does not make a difference. Trivially this is a best

response.

Case 2: i is in the cooperation phase. Let v̂ ≥ 0 denote the largest one-period gain

that i has in this stage by any one-step deviation from any strategy profile. Since the

number of networks, the number of games and the number of each agent’s actions in

every game are all finite, we know that v̂ exists. Suppose that i deviates, the difference

in her payoff from no deviation is bounded above by

v̂ −
K∑
τ=1

γτ (
∑

g′∈Mi(g)

ui(a(g′))−
∑
j:ij∈g

c).

Similar to above, we can find integerK2 such thatK2(
∑

g′∈Mi(g)
ui(a(g′))−

∑
j:ij∈g c) >

v̂. When K = K2 and γ is sufficiently close to 1, no deviation is i’s best response. Then

we can let K = max{K1,K2} to obtain our desired K such that σ(g, a) is an equilibrium.

Finally, convergence follows from its definition and the characterization of σ(g, a, L).

This completes the proof.

This result asserts that when the monitoring structure is sufficiently informative and

agents are sufficiently patient, the simple strategy profile we propose is an equilibrium

with convergence. The range of network and action profile that can be converged to

is rather broad: it contains most such network-action combination that the dynamic
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process can possibly converge to, except the special boundary cases with some agents

having a zero payoff. It is useful to contrast this result with the familiar Folk Theorem

in repeated games: the Folk Theorem focuses on payoffs that can be achieved in the long

run, possibly by unstable and random equilibrium behavior; the Convergence Theorem

focuses on networks and action profiles that can persist in the long run. We aim at

identifying structures of connections and behavior that are stable over time.

It is also worth mentioning how our prescribed strategy constitutes best responses

under all possible public and private observed histories, which can be extremely complex

in principle. Two factors are crucial: unilateral link severance and informative monitor-

ing on network formation. Even if an initial deviation is only privately observed, it will

become “public” in the next period because the corresponding link(s) will be severed,

which will then be reflected in the public signal. The short time interval (one period)

before a private deviation is revealed in the form of link severance to the public ensures

that using myopic best response is optimal in the period when the deviation occurs. Once

punishment is announced by the public signal, the one-period Nash equilibrium that no

agent agrees to form any link serves as a punishment profile that yields each agent her

minmax payoff 0. Hence, cooperation can be incentivized as long as the punishment

phase is sufficiently long, but not necessarily forever so that the process can still return

to cooperation after any history. In the next section, we present a different Convergence

Theorem that states the consequence of taking out the monitoring structure.

4.2 Convergence Theorem without Monitoring Structure

In this section we consider the environment without the public signal device y. A strategy

for an agent then consists of mappings from her private knowledge only, to her available

decision sets in each stage. Specifically, it consists of two mappings σ1i : K → {0, 1}|I|−1

and σ2i : K × 2Mi → Ai.

4.2.1 Construction of Equilibrium Strategies

As before, we explicitly construct a strategy profile that will be used for our Convergence

Theorem. Fix a network and a one-period action profile (g, a), and consider the following

strategy profile, denoted σ(g, a):

For every agent i, consider every maximal complete sub-network g̃ ∈ M̄i(g):

1. In stage 1: start with the cooperation phase (for g̃) in period 1: choose l1ij = 1

if and only if ij ∈ g̃. In t > 1, if g̃ ∈ M̄i(g(lτ )) and κτi = {aτj : aτj = aj(g
′),g′ ∈

Mi(g)} for all τ < t, then continue the cooperation phase.

14



2. Otherwise, i enters in the punishment phase. Consider the first period t when

i has observed some agent deviating from the cooperation phase. If the deviation

includes a deviation in network (as signaled by g̃ /∈ M̄i(g(lt−1))), then choose

ltij = 0 for every j 6= i.

If the deviation is only a deviation in action, then choose ltij = 0 for every j 6= i

who has also observed the deviation. The identities of such j’s in g̃ can be inferred

from κt−1i , and we denote the set of these agents as J . For agents in (Q(g̃)\J)− i,
choose i’s one-period best response in linking decisions in g̃, assuming that those

agents and i will play their dominant strategy in every game within g̃ in stage 2.

Note that the set of complete sub-networks of g̃ involving i at the beginning of

stage 2 can be determined to be Mi(g̃ \ {ij : j ∈ J}), and thus this best response

must exist. Then from period t + 1 onwards, choose lij = 0 for every j 6= i. The

punishment phase ends after K periods after the first period t′ when g̃ /∈ M̄i(g(lt
′
)).

After that, i resumes the cooperation phase, and so on.

3. In stage 2: in every period t, for every complete sub-network g′ ⊂ g̃, play ai(g
′)

if i is in the cooperation phase and g̃ ∈ M̄i(g(lt)), and play aDi (g′) otherwise.

The behavior described by this strategy profile can be understood as enforcing coop-

eration locally with a “grim trigger” strategy on every maximal complete sub-network.

Whenever a deviation is observed, the agents involved begin punishment by choosing

their myopic best response first and then severing all links within the corresponding

maximal complete sub-network, but they remain cooperative in other maximal complete

sub-networks.

4.2.2 Convergence Theorem

We present the Convergence Theorem without monitoring structure below.

Theorem 2. Suppose that (g, a) satisfies the following conditions:

1.
∑

g′∈Mi(g̃)
ui(a(g′))−

∑
j:ij∈g̃ c > 0 for every i ∈ I and every g̃ ∈ M̄i(g).

2. For every i ∈ I and every two maximal sub-networks g̃1, g̃2 ∈ M̄i(g), g̃1 ∩ g̃2 =

∅.

Then there exists integer K and a cutoff γ̄ ∈ (0, 1) such that when γ ∈ [γ̄, 1) and

the monitoring structure is as informative as yg,K , σ(g, a) is an equilibrium where the

dynamic process converges to (g, a).
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Proof. Apply the argument in the proof of Theorem 1 to every maximal complete sub-

network g̃ ∈ M̄i(g) for every i.

This result illustrates that even though global cooperation cannot be enforced due

to the absence of public signals, the agents can still sustain local cooperation. Here the

network topology itself serves as a locally public signal: since every agent can observe

the complete sub-networks they are in, the topology of every maximal complete sub-

network is common knowledge among its members. Hence, when such a sub-network

provides each member with a positive payoff and no two such sub-networks overlap, the

argument for Theorem 1 can be applied.

To contrast with Theorem 1, we demonstrate with examples how cooperation fails

if either of the two conditions in Theorem 2 does not hold. First, consider a group of

5 agents and the following network: {12, 23, 13, 14, 15, 45} (Figure 1(A)). Agent 1 is a

“pivotal” agent in this network, in the sense that she is the only agent that are involved

in both triangles {12, 23, 13} and {14, 15, 45}. As a result, if the sub-network {12, 23, 13}
yields a negative payoff for agent 1 (violating condition 1 above), she will never be willing

to remain linked with agents 2 and 3 even if her other maximal complete sub-network

{14, 15, 45} can compensate her with a large positive payoff. She could simply sever

her links 12, 13 and stick to her original links and actions in the other triangle, because

without a public signal agents 4 and 5 will never realize any deviation among agents 1,

2 and 3.

Next, we discuss a violation of the second condition. Consider a group of 4 agents and

the following network: {12, 23, 13, 14, 24} (Figure 1(B)). Suppose that a deviation occurs

in the game Γ({23}) in period t. According to the strategy profile σ(g, a), punishment

begins in triangle {12, 23, 13} in period t + 1 and link 12 will be severed in period

t + 2. However, period t + 2 is regarded as the time of an initial deviation in triangle

{12, 14, 24}, so there is time inconsistency for agents 1 and 2 as for when to resume link

12. This timing issue is even more complex if many maximal complete sub-networks

overlap, and we will leave studying coordinated punishment with local information for

future research.

4.3 Welfare Results

In this section, we present results related to social welfare, i.e. the sum of all agents’ pay-

offs. First we illustrate a simple relation between welfare improvement and equilibrium

sustainability.

Definition 3. For two network-action combinations (g, a) and (ĝ, â), we say that (ĝ, â)
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Figure 1: cooperation failure with violation of either condition

is an improvement on (g, a) if for every i ∈ I,
∑

g′∈Mi(ĝ)
ui(â(g′)) −

∑
j:ij∈ĝ c ≥∑

g′∈Mi(g)
ui(a(g′))−

∑
j:ij∈g c.

An improvement occurs if each agent enjoys a higher one-period payoff. Such im-

provement may occur on network (e.g. adding/deleting links with otherwise unchanged

actions), action (keeping the network topology but choosing different actions) or both.

The following result is a corollary of Theorem 1.

Corollary 1. Fix (g, a). Suppose that (ĝ, â) is an improvement on (g, a), and that (g, a)

satisfies the condition in Theorem 1. Then there exists integer K and a cutoff γ̄ ∈ (0, 1)

such that when γ ∈ [γ̄, 1) and the monitoring structure is as informative as yg,K , σ(g, â)

is an equilibrium in which the dynamic process converges to (g, â).

This result is a positive one on welfare because it shows that every improvement

upon the current equilibrium network and action profile, no matter what the current

equilibrium prescribes, is feasible once agents are patient enough. The reason for our

difference with negative results in the literature (e.g. Watts[34] and Dutta et al.[9]) lies

in agent foresight and informative record of history. The literature has shown that the

absence of either factor leads to unavoidable inefficient outcomes, while we prove that

the combination of both enables welfare improvement.

Next, we compare our model with one under exogenous network formation, in order

to evaluate the social consequence of letting agents make linking decisions. We begin

with the definition of strong efficiency.

Definition 4. Given cost c, a combination of network and action profile (g(c), a(c)) is

strongly efficient if it yields the highest possible sum of one-period payoffs.
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Since the strongly efficient (g(c), a(c)) is unique. Note that this is a stronger defini-

tion than Pareto efficiency because it requires the maximization of the sum of payoffs.

This definition is widely adopted by the literature on network formation and provides a

straightforward benchmark of social optimality.

Now we introduce the alternative model to compare with. Consider the following

game with exogenous network : in stage 1 of every period t, instead of forming a network

by the agents’ choices, there is a probability distribution G that assigns a network gt.

The rest of the game remains the same as before. Given discount factor γ and cost c,

let WEX(γ) denote the maximum social welfare (sum of all agents’ payoffs) that can be

achieved in equilibrium in the game with exogenous network, and let WEN (γ, c) denote

the maximum social welfare that can be achieved in equilibrium with convergence in the

game with endogenous network (the original game).

Theorem 3. Assume that in (g(0), a(0)), every agent gets a positive one-period payoff.

Then there exist cutoffs γ̄ ∈ (0, 1) and c̄ > 0 such that when γ ∈ [γ̄, 1], c ∈ [0, c̄) and the

monitoring structure is sufficiently informative, WEX(γ) < WEN (γ, c).

Proof. According to Theorem 1, when c = 0 there exists a cutoff γ̄ ∈ (0, 1) such that

when γ ∈ [γ̄, 1] and the monitoring structure is sufficiently informative, σ(g(0), a(0)) is

an equilibrium where the dynamic process converges to (g(0), a(0)).

By the definition of σ(g(0), a(0)), it yields a higher social welfare than WEX(γ).

By assumption, in (g(0), a(0)) every agent gets a positive one-period payoff, and thus

there exists c̄ > 0 such that when c ∈ [0, c̄), the social welfare from (g(0), a(0)) is

still higher than WEX(γ) and σ(g(0), a(0)) is still an equilibrium where the dynamic

process converges to (g(0), a(0)). Finally, by the definition of WEN (γ, c), WEN (γ, c) is

at least as large as the social welfare from σ(g(0), a(0)). Therefore we have WEX(γ) <

WEN (γ, c).

Theorem 3 provides a condition under which our model with endogenous network

formation is superior in welfare to a model with exogenous network formation. This

condition is satisfied in many typical network games, e.g. the widely studied prisoners’

dilemma. From the perspective of designing an environment for individuals to interact,

this result provides a key implication on policy: it is socially desirable to bestow agents

the freedom to choose their social or professional circles and lower the cost of establishing

relationships, as compared to a predetermined and rigid structure of communication. As

long as agents share the norm of what to pursue, social optimum can persist as a self-

fulfilling prophecy in equilibrium.
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4.4 Examples

In this section, we apply our theoretical results to a particular game to illustrate some

interesting implications from the model.

4.4.1 Interrelation between Network and Game

Consider the following environment: N = 3, c = 0.5. Each possible game Γ(g′) is

described as follows: suppose that there are n players in the game. Every player has

two available actions C (contribute) and D (defect). If all agents choose D, they get a

payoff of 1 each. If at least one agent chooses C, whoever chooses C gets 0 each while

whoever chooses D gets n+ 1 each. In other words, contribution is purely altruistic. It

is clear that D is the strictly dominant action in each game.

First, we demonstrate how the network topology may affect sustainable actions.

Consider the network g = {12, 23, 13}, and the following action profile a: 1 plays C

and 2, 3 play D in Γ({12, 23, 13}); 1 plays D and 2 plays C in Γ({12}); 1 plays D

and 3 plays C in Γ({13}); 2 plays C and 3 plays D in Γ({23}). This is (one of) the

(strongly) efficient action profile given the network. According to Theorem 1, σ(g, a)

is an equilibrium where the dynamic process converges to (g, a) when γ is close to 1.

Hence efficient contribution can be sustained in network g = {12, 23, 13}.
Now consider the network {12, 23}. In this network, efficient contribution (one and

only one agent contributes in each game) cannot be sustained in this network. To see

this, note that for efficient contribution to take place, at least one agent will get a payoff

of 0 from her game(s), and thus a strictly negative payoff in total because of the link

maintenance cost. Then a strictly better decision for the agent is to sever all her links

and get a payoff of 0.

Conversely, changing the nature of games can have a significant impact on sustainable

networks. Suppose that the game on {12, 23, 13} is replaced by the following one: there

is only one action for each agent, and the payoff is −5 for each agent. Now it is possible

to sustain an open triangle (e.g. {12, 23}) with an appropriate action profile (e.g. all

agents take action D), but it is not possible to sustain the closed triangle {12, 23, 13}
with any action profile.

4.4.2 Impossibility of Global Sustainability without Monitoring Structure

Our second example shows the importance of an informative monitoring structure for

enforcing global cooperation. Consider the same environment as above, except for that

there are now N agents. Consider the wheel network {12, 23, · · · , (N − 1)N, 1N}, and
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the following action profile a: 1 plays C and 2 plays D in Γ({12}); 2 plays C and 3 plays

D in Γ({23}); · · · ; N plays C and 1 plays D in Γ({1N}). This is one of the action profiles

that yields the highest possible social welfare conditional on g. It is clear that (g, a)

satisfies the condition in Theorem 1 and hence can be sustained with the presence of an

informative monitoring structure. The range of γ for sustaining (g, a) is not affected by

N .

Consider the case without monitoring structure. For agent 1, if she deviates in period

t by playing D in Γ({12}) or simply severs the link 12, it is not going to affect anything in

her only other game Γ({1N}) by period t+N − 1 in any equilibrium unless she deviates

against agent N by herself. Hence, for every γ ∈ (0, 1), there exists integer N such that

agent 1 (as well as every other agent) has an incentive to deviate. This argument can

be applied to show the following general result:

Proposition 3. For every γ ∈ (0, 1), N(γ) exists such that when there are at least

N(γ) agents, if the dynamic process converges to (g,a) in equilibrium where g is a wheel

network, then every agent must always play D in a.

This result does not only refer to a wheel network, but represents a general property

of a sparse network. Without a monitoring structure (or when the monitoring structure

is not sufficiently informative) or a sufficiently dense network, an agent will expect her

deviation in one game to affect her payoffs in other games only after a long period of time.

As a result, it is impossible for her to remain cooperative in the long run. It implies

that when public information is limited, patience alone is not enough for sustaining

cooperation: agents also need to be connected closely enough to ensure a fast response

to every possible deviation.

5 Conclusion

In this paper, we proposed a model that combines network formation and network games.

The principal innovation of our paper is the view of networks as having two fundamental

functions: an underlying structure for interaction, and a channel of information about

other players’ behavior. In our framework, both whom to link with and what actions to

take in games played on the resulting network are part of an agent’s strategic decision.

Our results contrast sharply with the literature on pure network formation as well as the

literature on games under exogenous network topologies, in that we find non-negligible

interdependency between networks and actions in equilibrium. Also, we emphasize on

the importance of an informative monitoring structure, and show that the impact of

networks is even more significant in the absence of informative public monitoring.
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We believe that our framework can be the foundation of several interesting research

directions. One possible topic is to consider a specific class of network games and to

study the relation between equilibrium behavior and important aspects of equilibrium

networks, such as clustering, centrality and proximity. Also, it would be interesting to

bring in a communication system (such as a language for cheap talk) into the model,

which will enable a more comprehensive analysis of social circles and interpersonal rela-

tionships in particular.
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