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Abstract

What networks can form and persist when agents are self-interested?

Can such networks be efficient? A substantial theoretical literature predicts

that the only networks that can form and persist must have very special

shapes and that such networks cannot be efficient, but these predictions

are in stark contrast to empirical findings. In this paper, we present a

new model of network formation. In contrast to the existing literature, our

model is dynamic (rather than static), we model agents as foresighted (rather

than myopic) and we allow for the possibility that agents are heterogeneous

(rather than homogeneous). We show that a very wide variety of networks

can form and persist; in particular, efficient networks can form and persist

if they provide every agent a strictly positive payoff. For the widely-studied

connections model, we provide a full characterization of the set of efficient

networks that can form and persist. Our predictions are consistent with

empirical findings.
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1 Introduction

Much of society is organized in networks and networks are important because in-

dividuals typically interact largely or perhaps entirely with those to whom they

are closest in the network (not necessarily physically). Examples include social net-

works (Facebook), professional networks (LinkedIn), trading networks (Tesfatsion[32]),

channels of information sharing (Chamley and Gale[3]), buyer-seller networks

(Kranton and Minehart[22]), etc. The questions which this paper addresses are:

What networks form and emerge at equilibrium if agents are foresighted? Are

these networks efficient? Are the emerging networks robust to various types of

deviations?

Network formation has been widely studied both in theoretical and empirical

settings. Starting from Jackson and Wolinsky[18] and Bala and Goyal[1], a large

and growing theoretical literature in economics has studied what networks form

when self-interested and strategic agents make decisions about which links to estab-

lish or sever with other agents. Past research has mainly focused on characterizing

the networks emerging at equilibrium and determining whether socially-efficient

networks can be supported in equilibrium.

In the existing literature, network formation has been either modeled in a static

setting (e.g. Jackson and Wolinsky[18]), where agents take actions only once and

simultaneously, or a dynamic setting (e.g. Watts[33]) where agents meet other

agents randomly over time and choose their actions (on whether to form or break

a link with another agent) whenever they are allowed to do so. Both these model

have two important limitations: i) agents are myopic, i.e. their actions at any

point in time are solely guided by their current payoffs, without consideration

of future consequences; and ii) agents are homogeneous, i.e. an agent’s payoff

depends only on the network topology and her position in the network, but not on

her own characteristics or the characteristics of her peers. Such limitations make

this literature unable to model and characterize real-world social and economic

interactions. One of the key conclusions of this branch of literature is that efficiency

cannot be attained in equilibrium and the set of achievable network topologies

and that of efficient network topologies often differ. The existing limited work on

network formation with foresighted agents (see for example Dutta et al.[6]) shares

this negative result: they show that there are various valuation structures in which
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no equilibrium can sustain efficient network topologies. These findings are in stark

contrast to empirical findings which suggest that efficient network topologies often

emerge in practice.

In this paper, we provide a first model and comprehensive analysis of dynamic

network formation that does not suffer from the abovementioned limitations. We

adopt a standard dynamic network formation game, where agents meet one another

randomly at discrete times, and they choose whether to form or break links with

other agents. As it is standard in the network formation literature, we assume that

link formation requires bilateral consent while link severance is unilateral. We relax

two key limitations of the existing work. In our model, agents are heterogeneous,

i.e. their payoffs depend on their own characteristics and the characteristics of their

peers as well as the topology of the network and their position in the network. More

importantly, agents are foresighted : in making decisions they take into account

both the current consequences of their decisions and the future consequences of

these decisions. Foresight plays an important role in virtually all environments

and would seem to play an especially important role in network formation: agents

may incur substantial costs to form or maintain links that yield small current

benefits because they (correctly) foresee that forming these links will encourage

linking behavior of others in a way that yields large future benefits. Analysis that

ignores the effects of foresightedness (and treats behavior as myopic) misses an

important piece of agents’ cost-benefit analysis. With hindsight, it is perhaps not

surprising that such analysis – while simpler than the analysis carried out here –

leads to predictions that are less consistent with empirical observations of real-life

networks.

The dynamic game we analyze is a stochastic game in which states are de-

termined by the random selection process as well as the agents’ actions. When

types are private knowledge, this game is also a Bayesian game, in which agents

learn dynamically and update their beliefs based on observation of the formation

history. As is common in the literature on dynamic games, our focus is character-

izing the equilibrium behavior and outcomes when agents are patient. However,

instead of characterizing the set of achievable payoffs as in the repeated-game lit-

erature, we aim to characterize the set of networks which persist (do not change)

in equillibrium (forever).

Our main findings are presented in three theorems. Theorem 1 is a Network
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Convergence Theorem for the setting where agents have complete information

about characteristics of others. It demonstrates that networks that yield each

agent a positive one-period payoff can persist in the long-run. The equilibrium

strategies we construct are Markov, and robust in several dimensions: to initial

configurations, to agent trembles, and to group deviations.

For a widely studied special case of our model, the connections model, our re-

sults are directly comparable to previous theoretical and empirical work, especially

with respect to the sustainability of efficient networks. Theorem 2 extends the set-

ting of Jackson and Wolinsky[18] to heterogeneous agents who act foresightedly.

This extension yields predictions that are much more consistent with empirical

findings than previous work. In particular, we predict that efficient networks may

be obtained in equilibrium, in contrast to [18] which predicts that efficient networks

almost never obtain. (See below for further discussion.)

Theorem 3 is a Network Convergence Theorem for the setting in which infor-

mation is incomplete: agents begin with prior beliefs about the characteristics of

others and perform Bayesian updates based on observed history. Under natural

assumptions about the valuation structure, there exists an equilibrium in which

patient agents are incentivized to reveal their types by making connections. In

such an equilibrium, information becomes ultimately complete and again, any

network yielding a positive one-period payoff for every agent can be sustained.

This result points to a tractable equilibrium strategy profile that covers the range

of sustainable network topologies and involves a simple updating process.

In summary, our results yield a new and positive basis for the sustainability

of efficiency in networks: in settings in which efficient networks provide every

agent with a positive payoff, these networks can be sustained in equilibrium as

long as agents are patients. This is true for both the complete and incomplete

information case. Nevertheless, we find that in typical cases the agents need to be

more patient under incomplete information than under complete information to

achieve efficiency.

The remainder of the paper is organized as follows: Section 2 provides a review

of the related literature. Section 3 introduces the model. Section 4 presents

the Network Convergence Theorem under complete information on types, with

an explicit construction of equilibrium strategies and a discussion on robustness.

Section 5 analyzes the connections model and characterizes the generically unique
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efficient network topology. Section 6 introduces the Network Convergence Theorem

under incomplete information and illustrates the contrast between complete and

incomplete information. Section 7 concludes the paper.

2 Literature Review

The existing economics literature on network formation can be generally catego-

rized in two main classes: settings in which the agents link formation is bilateral

or unilateral, i.e. whether the creation of a link requires bilateral consent of both

agents involved, or can be done unilaterally by an agent. Numerous social networks

applications such as Facebook, Google+ etc. are best modeled using models apper-

taining to the first category, while Twitter is best modeled in the second category.

The well-known connections model by Jackson and Wolinsky[18] falls into the first

category as do the models considered in this paper. Considering static strategic en-

vironment with homogeneous and myopic agents, [18] argued that strongly efficient

networks are necessarily either empty or a star or a clique and that in generic cases

strongly efficient networks cannot be sustained via agents’ self-interested behav-

ior. In the second category, Bala and Goyal[1] provided a comprehensive analysis

which yields quite different predictions on the efficient network topologies and the

equilibrium network topologies. However, we will not elaborate on their results in

this paper since our models falls into the first category.

A more recent development in static network formation is to introduce hetero-

geneity among agents. Heterogeneity takes different forms in different branches in

the literature, but it can be divided into two main categories. The first type of

heterogeneity is exogenous, such as different failure probabilities for different links

(Haller and Sarangi[15]) and agent-specific values and costs (Galeotti[10], Galeotti

et al.[12]). The second type is endogenous heterogeneity, often represented as the

amount of valuable resource produced by the agents themselves, as in Galeotti

and Goyal[11]. In our paper, we adopt the first approach since the heterogeneity

we focus on is an agent’s endowed individual characteristic. We assume a more

general framework than most existing literature by assigning each agent a type

that may affect others’ payoffs as well as her own. We conduct our analysis in

both cases where types are common knowledge (complete information) and where

they are private knowledge (incomplete information).
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Another strand of literature describes network formation as an interactive pro-

cess over time, instead of a one-shot, static action profile. Again, various methods

have been proposed. For instance, Johnson and Gilles[19] and Deroian[5] analyze

variations of the connections model in a finite sequential game, and Konig et al.[20]

models network formation as a continuous-time Markov chain with random arrival

of link creation opportunities. In this paper, we follow the network formation

game introduced by Watts[33], in which pairs of agents are selected randomly on

a discrete and infinite time line to update the potential link between them. A

link is formed or maintained with bilateral consent, and not formed or severed

if either agent chooses to do so. This framework and variations of it have been

widely adopted to analyze strategic interactions in social and economic networks

(Jackson and Watts[17], Skyrms and Pemantle[30], Song and van der Schaar[31]).

In works adopting this dynamic model, agent myopia is a common assumption,

which means that agents only take into account their current payoffs at every point

of decision; another prevalent assumption is agent homogeneity, with the exception

of our prior work in [31], where we analyzed a variation of the connections model

where an agent’s payoff is affected by others’ types but not his own. In terms of

sustaining efficient networks, predictions made are similar to Jackson and Wolinsky

[18]: the strongly efficient network cannot be sustained at all times in the formation

process. The formation and persistence of the strongly efficient network is random

– it depends on the realized selection of agent pairs in the early state – and as a

result the probability of sustaining the efficient network decreases as the number

of agents increases.

There have been a few attempts to introduce foresightedness into the dynamic

network formation, but overall this topic remains understudied. This paper is

related to Dutta et al.[6], who also adopted the model of Watts[33] and assumed

that agents take future payoffs into account. Their main result once again points

to the impossibility of sustaining efficient networks in equilibrium by constructing

a representative example. The major difference between our paper and this paper

is that we allow for a public signal in the definition of a state in a Markov strategy

profile – in this way, the agents may have only limited knowledge about the past

formation history but will still be able to cooperate in achieving efficiency. Our

positive result on sustaining efficient networks holds for a more general valuation

structure than most existing frameworks. Alternative models on foresightedness
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in network formation include Page Jr. et al.[28] and Herings et al.[16], whose

solution concept is a pairwise stable network instead of equilibrium. Yet again the

efficiency-related results point to cases where the strongly efficient network cannot

be sustained even if it provides each player a positive payoff.

Our approach to the analysis and in particular our construction of equilibrium

strategies owes a great deal to the work of Dutta[7] and Forges[9]. In particular,

we share the general notion of characterizing patient agents’ behavior (though in

the sense of network topologies formed instead of payoffs attained) and our con-

struction of equilibrium strategy profiles benefit from the existence of a “uniform

punishment strategy” mentioned in Forges[9].

There are numerous empirical studies characterizing the properties of real-

world networks. The major properties identified by these works are: short diam-

eter (Albert and Barabasi[2]), high clustering (Watts and Strogatz[34]), positive

assortativity (Newman[26][27]), and inverse relation between clustering coefficient

and degree (Goyal et al.[14]). Moreover, experimental studies such as Falk and

Kosfeld[8], Corbae and Duffy[4], Goeree et al.[13] and Rong and Houser[29] have

indicated that typical equilibrium network topologies predicted by the existing

theoretical analysis, especially the star network, only emerge in a small fraction

of experimental outcomes. Last but not least, Mele[25] and Leung[24] show that

networks formed in large social communities, where agents are heterogeneous and

withhold certain private information, often exhibit patterns not predicted by ex-

isting theoretical literature. In the subsequent analysis, we will discuss most of the

above properties and illustrate how they can be accounted for in our framework.

3 Model

3.1 Network Topology

Consider a group of agents I = {1, 2, ..., N}. We consider undirected networks.

Thus, a network is a collection of unordered pairs of distinct elements of I : g ⊂
G(I) = {ij : i, j ∈ I, i ̸= j}. ij is called a link between agents i and j. A network

g is empty if g = ∅. (Agents who are not linked to anyone are singletons ; in the

empty network, all agents are singletons.) Let G(I) = 2G(I) denote the set of all

possible networks. Given a subset of agents I ′, let GI′ denote a network that is
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formed within I ′.

Given a network g we say that agents i and j are connected, denoted i
g↔ j,

if there exist j1, j2, ..., jn for some n such that ij1, j1j2, ..., jnj ∈ g. Let dij denote

the distance, or the smallest number of links between i and j. If i and j are not

connected, define dij := ∞.

Let N(g) = {i|∃j s.t. ij ∈ g} be the set of non-singletons, and let Ni(g) =

{j : ij ∈ g} be the set of neighbors of i. A component of network g is a maximal

connected sub-network, i.e. a set C ⊂ g such that for all i ∈ N(C) and j ∈ N(C),

i ̸= j, we have i
C↔ j, and for all i ∈ N(C) and j ∈ N(g), ij ∈ g implies

that ij ∈ C. Let Ci denote the component that contains link ij for some j ̸= i.

Unless otherwise specified, in the remaining parts of the paper we use the word

“component” to refer to any non-empty component.

A network g is said to be empty if g = ∅, and connected if g has only one

component which is itself. g is minimal if for every component C ⊂ g and every

link ij ∈ C, the absence of ij would disconnect at least one pair of formerly

connected agents. g is minimally connected if it is minimal and connected.

3.2 Dynamic Network Formation Game

We adopt the framework by Watts[33] to formulate the network formation game.

Time is discrete and the horizon is infinite: t = 1, 2, .... We assume an initial

network g(0); this is a parameter. The game is played as follows:

1. In each period, a pair of agents (i, j) is randomly selected with equal

probabilities to update the link between them.

2. The two selected agents (each knowing the identity of the other) then

play a simultaneous move game: if there is a link between them, each can

choose to sever the link or not; if there is no link between them, each can

choose to form a link or not. An existing link can be severed unilaterally,

whereas formation of a link requires mutual consent.

3. In addition, in each period every agent (whether or not she is selected in

the current period) can choose to sever any of her existing links.

It is convenient not to distinguish between severing a link and not forming a link.

Hence, for each agent i and each agent j, i has two possible actions with respect
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to j : aij = 1 denotes the action that i agrees to form a link with j (if there is

no existing link) or not to sever the link (if there is an existing one), and aij = 0

otherwise. We emphasize that a link is formed or maintained after bilateral consent

(i.e. aij = aji = 1). Write A = {0, 1}.
Let ϕ(t) be the pair of agents selected in period t and let σ(t) := {ϕ(τ),g(τ)}tτ=1

denote a formation history or a formation path up to time t, with the initial

condition that σ(0) = (∅,∅). Let Σ = {σ(t) : t ∈ N} denote the set of all possible

formation histories. It is important to note that the formation history is different

from the sequence of actions taken in two aspects. Conceptually, the formation

history is a record of the evolution of the network from an outsider’s point of view.

In other words, it is the set of all possible public information, whereas the actions

are part of the agents’ private information. Technically, even though the formation

history is determined by actions taken over time, it does not perfectly reveal every

action. For instance, seeing a link broken or not formed in the formation history

only implies that at least one of the two related agents chose action 0 in that

period, but it does not identify the agent(s) who did so.

Agents may not observe the entire formation history, but in each period every

agent i knows its neighbors Ni(g), i.e. the set of agents she links to. In addition,

in each period the agents observe a public signal which is generated by a signal

device y : Σ → Y , where Y is the set of signal realizations. We sometimes refer

to y as the monitoring structure in the remainder of this paper. In general, the

signal generated may depend on the entire formation history and not only on the

current actions. (Of course, the latter is a special case.) We assume that y and Y

are common knowledge.

The signal device determines what agents know about the formation history.

For instance, if Y = {0} and y(σ(t)) = 0 then agents have no knowledge of the

formation history whatsoever; if Y = Σ and y(σ(t)) = σ(t) then agents have

complete knowledge of the formation history. If agents observe the events of each

period, i.e. (ϕ(τ),g(τ)) for each τ , then they implicitly observe the full history σ(t).

In general however, some incomplete monitoring structure cannot be generated

by single period reports; see our discussion in Section 5. Intermediate signals

structures represent incomplete observability. Note however, that y is deterministic

instead of random, so our notion of incomplete observability is different from the

perhaps more familar notion of imperfect monitoring.
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In the various applications of this model, especially social networks, the signal

device can be interpreted as a news media, e.g. a newspaper, a television program

or a website. It will not record everything in the past for its audience, but it broad-

casts important events that attract public attention or irregular or inappropriate

activities by certain individuals. As we will see even incomplete knowledge about

the formation history is sufficient to sustain efficient networks in equilibrium.

3.3 Payoff Structure

Each agent has a type, denoted by θi for agent i. Let Θ ⊂ R denote the set of

possible types. Let θ̄ = (θ1, θ2, · · · ) denote the type vector for the whole group of

agents. Given a subset of agents I ′, let θ̄I′ denote the associated type vector.

The one-period payoff of agent i depends on the network structure and the

type vector. Specifically, this payoff is a function ui : Θ
N ×G(I) → R. We assume

that the payoff to agent i is zero whenever agent i is a singleton: ui(θ̄,g) = 0 for

all g in which i is a singleton, regardless of θ̄ and g. Also, we assume that each

agent’s payoff satisfies component independence: ui(θ̄,g) = ui(θ̄, Ci).

For each agent, her payoff is realized in every period, though payoffs in different

periods may well be different according to the network topology. A payoff that

realizes t periods from now is discounted by γt, where γ ∈ (0, 1) is the time discount

factor. Hence, if the vector of networks that form over time is ḡ = {g(τ)}∞τ=1, agent

i’s total (discounted) payoff evaluated at period t is

Ui(θ̄, ḡ, t) =
∞∑
τ=0

γτui(θ̄,g(t+ τ)).

If the network is constant from time t onward, this reduces to (1−γ)−1ui(θ̄,g(t)).

In our analysis, we will discuss the possibility of converging to an efficient

network structure. Following the convention in the literature, our benchmark for

efficiency will be the strongly efficient network, i.e. the network that yields the

largest sum of one-period payoffs. We provide a formal definition below.

Definition 1 (Strong efficiency). Given θ̄, a network g is strongly efficient if∑N
i=1 ui(θ̄,g) ≥

∑N
i=1 ui(θ̄,g

′) for every g′.

Since the number of possible network topologies is finite, a strongly efficient

network always exists.
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Another type of network we identify is a core-stable network. In a later section

we will demonstrate that such a network entails important additional properties

of the formation process.

Definition 2 (Core-Stable network). A network g is core-stable if there exists

no subgroup of agents I ′ ⊂ I and network g′ among I ′ (that is, there is no link

ij ∈ g′ with i ∈ I ′ and j ∈ I \ I ′) such that

ui(θ̄,g
′) ≥ ui(θ̄,g),

for every agent i ∈ I ′, and the inequality is strict for some agent i ∈ I ′. If g is

not core-stable, we say that g′ blocks g and call I ′ a blocking group.

We use the term core-stability because this criterion discourages any sub-

group of agents to break away from the network and form a sub-network on their

own. Note that this is different from pairwise stability defined in Jackson and

Wolinsky[18]. Pairwise stability of a network means that between any two agents,

forming a new link cannot benefit both and severing an existing link must hurt at

least one, holding other links in the network constant. It is a widely used solution

concept for the static analysis of network formation. Core-stability is more suitable

in our dynamic setting because foresighted agents will look ahead to the possibility

of cooperation with a group of other agents, not just a single other agent.

3.4 Example: Connections Model

We use the connections model in Jackson and Wolinsky[18] to illustrate how the

network topology itself, the agents’ positions and the type vector affect an agent’s

payoff. The connections model is widely applied in the network formation litera-

ture.

The payoff structure in this model is described as follows. There is a mapping f

from Θ to R++ that specifies payoffs from direct connections: if agent i is directly

connected with agent j (ij ∈ g), then agent i gets payoff f(θj) and agent j gets

payoff f(θi) from this connection. In addition, if agent i is indirectly connected

to agent j, then i obtains the payoff f(θj) discounted by δdij−1, where δ ∈ (0, 1)

is the spatial discount factor, and dij is the distance between i and j measured in
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the number of links. Finally, agent i pays a cost of c > 0 per period for every link

that i has. Hence, in a single period with network g, agent i’s current payoff is

ui(θ̄,g) =
∑
j:i

g↔j

δdij−1f(θj)−
∑
j:ij∈g

c.

It is easy to see that the above payoff structure satisfies the assumptions we

made in the previous section. In the original and widely adopted version of the

model, agents are assumed to be homogeneous, i.e. f(θj) is a constant independent

of j. In the above formulation, the agents are heterogeneous: an agent’s payoff

obtained from a connection depends on the type of the agent it connects to. Note

that the payoff structure exhibits non-local externalities: though an agent gets

a positive payoff from each agent she connects to, she only pays a cost for each

link she maintains. Moreover, an agent’s payoff depends both on the network

topology as well as an agent’s position. In particular, agents who are distantly

connected obtain lower payoffs from their connection than agents who are closely

connected. In various applications, this spatial discount can be regarded as the

decay of a valuable resource or information due to increased noise or risk. In a

later section, we will discuss the connections model in more details and present

important related results.

4 Network Convergence Theorem with Complete

Information

In this section, we characterize the set of networks that can persist in equilibrium

when agents are patient, assuming that the type vector is commonly known. We

start by defining strategies in this environment and the concept of an equilibrium.

In particular, we are interested in equilibria in which the network formation process

converges, i.e. over time the network rests on a specific topology which then

persists forever.

4.1 Strategy, Equilibrium and Convergence

Fix the signal structure Y . A (pure) strategy of agent i is a mapping that assigns,

following every history, an action in {0, 1} to every other agent j. The constraint
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on this mapping is that if i and j are not linked and the pair (i, j) is not selected

in the current period, then agent i’s action towards agent j has to be 0. Formally,

let ωij ∈ Ω = {0, 1} denote the state of whether the pair (i, j) is selected, and

let ζij ∈ Z = {0, 1} denote the state of whether i and j are linked in the current

period. Write H for the set of histories of public signals.

Definition 3 (Strategy). A (pure) public strategy of agent i is a mapping si:

si : (I − i)×H× Ω× Z → A

such that syij(·, ·, 0, 0) ≡ 0.

Let S denote the set of all public strategies. (As is customary, we assume that

agents condition only on the public signal.)

Throughout the paper, we will focus on Markov strategies, which by definition

depend not on the entire history of signals but only on the current signal. Hence,

a Markov strategy is a mapping si : (I − i)× Y × Ω× Z → A.

Associated with the device for public signals, the interpretation of a strategy

in this game is rather straightforward. For every agent i, the state in a Markov

strategy at a given time period is represented by her knowledge about the game

at that period, which is the combination of two elements: her knowledge about

every other agent j, which includes j’s type and whether j is linked to herself; and

her knowledge about the formation history σ(t). i’s information on the former

is complete since she knows both the identity of j and j’s type. The precision

of her information on the latter, on the other hand, may vary according to the

public signal generating function y. Note that strategies thus defined include

strategies that assign actions only based on the network formed in the previous

period (so that Y = G) as in some existing literature, for instance Dutta et al.[6].

A profile of strategies and a history define a probability distribution on future

histories assuming agents follow the given strategies. (Randomness arises because

the selection process is random.) When we take expectations we implicitly mean

expectations with respect to this probability distribution.

Now we are ready to define the equilibrium.

Definition 4 (Equilibrium). A (pure strategy) public perfect Markov equilib-

rium is a vector of public Markov strategies s∗ = (s∗1, · · · , s∗N) such that: for each
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agent i, every period t and every possible history of the public signals, s∗i maximizes

agent i’s expected discounted total payoff at period t given s∗−i.

For the remainder of the paper, we simply refer to a public perfect Markov

equilibrium as an equilibrium. It is easy to see that a pure strategy equilibrium

for the game always exists, regardless of the type vector and the specific payoff

structure. Indeed, since link formation and maintenance requires bilateral consent,

the strategy profile that every agent always chooses action 0 (sever/not form a link)

already constitutes an equilibrium. We note the existence of an equilibrium below.

Proposition 1. There exists a pure strategy equilibrium.

We focus on equilibria in which the network formation process converges (after

a finite number of periods) and so leads to a persisting network. Before convergence

occurs, the evolution of the network is random because the selection process is

random; after convergence occurs, randomness has no further effect and so the limit

network is a random function of the initial network and the strategies. We believe

that this notion provides an appropriate account for what is to be expected in

the formation process in various applications such as social circles. People tend to

form and sever links constantly in the starting phase of building their social milieu,

but over time they maintain a relatively fixed circle of acquaintances (Kossinets

and Watts[21]). We formally describe such convergence in our model below.

Given a realized formation history σ(t) , the network topology thereafter {g(τ)}∞τ=t+1

is a stochastic process. We denote the probability measure generated by this

stochastic process as Qs∗,σ(t).

Definition 5 (Convergence). Given a realized formation history σ(t) we say that

the network formation process converges to network g in equilibrium s∗ if

lim
T→∞

Qs∗,σ(t)(g(T
′) = g ∀T ′ ≥ T ) = 1.

We say that the network formation process converges weakly to network g if

it converges following the initial history σ(0) = (∅,g(0)), and that it converges

strongly to network g if it converges following every (finite) history.

Notice that convergence entails that the network converges in finite time with

probability 1.
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In what follows we focus on strong convergence rather than weak convergence

for 2 reasons. The first is that strong convergence implies that if the evolution

of the network is disturbed by some exogenous process then it eventually returns

to the same limit. The second is that strong convergence guarantees robustness

with respect to small errors and with respect to coalitional deviations, not just

individual deviations. We will discuss these points in more detail below.

4.2 Informative Monitoring Structures

We will explicitly construct equilibrium strategy profiles that yield strong conver-

gence to a given network provided that the monitoring is “sufficiently informative”.

We begin by describing what this entails.

Fix a network g and integer K ≥ 1. We begin by defining a particular moni-

toring structure yg,K .

1. Y = {C,P}, where C represents the cooperation phase and P represents

the punishment phase.

2. yg,K(σ(0)) = C.

3. In period t ≥ 1: if yg,K(σ(t− 1)) = C, we distinguish 2 cases:

– case 1: for every pair of agents ij ∈ g, aij = aji = 1 and for every pair

of agents ij /∈ g , aij = 0 or aji = 0 (or both).

– case 2: otherwise (i.e. case 1 fails for some pair of agents ij)

– In case 1, we define yg,K(σ(t)) = C and in case 2, we define yg,K(σ(t)) =

P .

4. In period t ≥ 1, if yg,K(σ(t− 1)) = P : we again distinguish 2 cases:

– case 1: y(σ(t− 2)) = y(σ(t− 3)) = .....y(σ(t−K)) = P

– case 2: otherwise

– In case 1, we define yg,K(σ(t)) = C and in case 2, yg,K(σ(t)) = P .
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As we will see in the proof of Theorem 1 below access to the information provided

by yg,K allows the agents to divide the formation process into two phases: the

cooperation phase which continues forever if agents choose their actions in order

to form or maintain the network g, and the punishment phase that starts when

agents depart from the cooperation phase and continues for K periods. From the

public signal C or P , each agent knows what phase she should currently be in,

but not how long that phase has lasted or how many times the same phase has

occurred before. As we will also see in the proof, the parameter K plays a crucial

role in guaranteeing that convergence is strong rather than weak.

Consider any other signal structure ŷ with signal space Ŷ . ŷ is as informative

as yg,K if there is a mapping η : Ŷ → Y such that yg,K(σ(t)) = η(ŷ(σ(t)). That is,

ŷ reveals at least as much about the history as yg,K (and perhaps more). Notice

that complete information is always as informative as yg,K , no matter what g and

K are.

4.3 Construction of Equilibrium Strategies

It is useful to give an explicit description of the strategies we will use in the proof.

We assume that the monitoring structure y is as informative as yg,K . Hence, agents

always know what they would know if the monitoring structure were exactly yg,K ;

the strategies we describe use only this information, so there is no loss in assuming

that the monitoring structure is exactly yg,K .

Consider the following strategy profile, denoted ŝc:

sij =

{
1, if ij ∈ g, yg,K = C, and max{ωij, ζij} = 1;

0, otherwise.

ŝc can be interpreted as the following pattern of behavior: the agents start by

cooperating towards building a designated network. They form or maintain a link

if and only if that link belongs to the specific network g. If a “deviation” - a link

in g is not formed or a link not in g is formed - is detected all agents leave the

social circle (break all links) for K periods before starting cooperation again.

4.4 The Network Convergence Theorem

We begin with a simple observation.
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Proposition 2. If there exists an equilibrium in which the formation process con-

verges weakly to the network g, then ui(θ̄,g) ≥ 0 .

Proof. Suppose that there exists an equilibrium where the formation process con-

verges to g weakly, and that ui(θ̄,g) < 0 for some i. Then on the equilibrium path

when g has been formed and will persist forever, i is always strictly better off

by deviating to the strategy sij = 0 and obtaining payoff 0 thereafter. This is a

contradiction to the assumption of an equilibrium.

The Network Convergence Theorem with complete information shows that if

the inequality is strict for all agents i, the monitoring structure is sufficiently infor-

mative (in particular if the monitoring structure yields complete information) and

agents are sufficiently patient then there is an equilibrium in which the formation

process converges strongly to g.

Theorem 1. Let g be a network for which ui(θ̄,g) > 0 for all i. There is an integer

K and a cutoff γ̄ ∈ (0, 1) such that if γ ∈ [γ̄, 1) and the monitoring structure is

as informative as yg,K, then there exists an equilibrium in which the formation

process converges strongly to g.

As we have noted above, complete monitoring is always as informative as yg,K

so we obtain as an immediate corollary the corresponding Network Convergence

Theorem for complete monitoring.

Corollary 1. Let g be a network for which ui(θ̄,g) > 0 for all i. If monitoring

is complete, there is a cutoff γ̄ ∈ (0, 1) such that if γ ∈ [γ̄, 1), then there exists an

equilibrium in which the formation process converges strongly to g.

It is useful to contrast the Network Convergence Theorem with the familiar

Folk Theorem for the repeated games. The Folk Theorem says that every feasible,

strictly individually rational long-run average payoff vector can be achieved in an

equilibrium if agents are sufficiently patient. The Network Convergence Theorem

says that every “feasible, strictly individually rational” network can be achieved

as the limit of a formation process. The Folk Theorem talks about the long-run

payoffs; the Network Convergence Theorem talks about the long-run network. The

proof of the theorem is stated below.

17



Proof. Consider the monitoring structure yg,K and the strategy profile ŝc. Given

θ̄, let v̄ denote the largest marginal benefit that an agent can obtain from forming

or severing a link in any network g. v̄ measures the largest possible marginal

benefit that an agent can get from deviating in one period. Since the number of

networks is finite, we know that v̄ exists.

Given θ̄and a formation history σ(t), consider an arbitrary agent. Let µ̄C(γ,M)

and µ
C
(γ,M) denote the largest and smallest expected total payoff the agent gets

within M periods of the cooperation phase, starting from any network. Note that

an agent’s payoff during the punishment phase is always equal to 0. We first

establish the following lemma.

Lemma 1. If ui(θ̄,g) > 0 for all i, then the following properties hold:

a. limγ→1 µ̄C(γ,∞) = limγ→1 µC
(γ,∞) = ∞.

b. There exists A > 0 such that µ̄C(γ,∞)− µ
C
(γ,∞) < A, regardless of γ.

Proof. LetW ∈ R denote the smallest possible payoff of any agent in any network

in one period.

For (a), it suffices to show that a lower bound of the two payoffs converges to

infinity as γ converges to 1. Consider the following hypothetical payoff structure:

agent i’s one-period payoff is W if the network is different from g, and ui(θ̄,g)

otherwise. Starting from any network g(0), the probability that g(t) ̸= {g} is

bounded above by min{N(N−1)
2

(1 − 2
N(N−1)

)t, 1} (this upper bound is constructed

by supposing that g(0) = ∅ and g is the complete network, and calculating the

probability that some pair of agents has never been selected during the t periods).

For all t such that N(N−1)
2

(1− 2
N(N−1)

)t < 1 (let t∗ be the smallest t satisfying this

condition), i’s expected payoff in g(t) is bounded below by

N(N − 1)

2
(1− 2

N(N − 1)
)tW + (1− N(N − 1)

2
(1− 2

N(N − 1)
)t)ui(θ̄,g),
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and agent i’s total expected payoff is bounded below by

t∗−1∑
t=1

γt−1W +
∞∑

t=t∗

γt−1(
N(N − 1)

2
(1− 2

N(N − 1)
)tW

+ (1− N(N − 1)

2
(1− 2

N(N − 1)
)t)ui(θ̄,g))

=
t∗−1∑
t=1

γt−1W +
∞∑

t=t∗

γt−1ui(θ̄,g) +
∞∑

t=t∗

γt−1N(N − 1)

2
(1− 2

N(N − 1)
)t(W − ui(θ̄,g))

=
W (1− γt∗)

1− γ
+

γt∗−1ui(θ̄,g)

1− γ
+

N(N − 1)

2

γt∗−1(1− 2
N(N−1)

)t
∗
(W − ui(θ̄,g))

1− γ(1− 2
N(N−1)

)
.

It is clear that the sum of the first term and the third term above has a lower

bound which is independent of γ. In addition, the second term converges to infinity

as γ converges to 1 regardless of i. Hence part (a) is proved. (b) can be proved

using a similar argument.

Consider agent i at period t following any formation history. Note that i cannot

really “deviate” in the punishment phase given that all the agents other than i are

using their prescribed strategy in ŝc. Hence we only need to consider a deviation

of agent i in the cooperation phase. According to the one-step deviation principle,

in order to determine whether ŝc is an equilibrium we only need to consider i’s

deviation in one period, after which i returns to her prescribed strategy in ŝc.

As mentioned before, the largest possible marginal benefit that i gets from this

deviation in this period is v̄. Starting from the next period, i’s expected total

payoff is bounded above by

γ1+K µ̄C(γ,∞).

If i does not deviate, then starting from the next period, i’s expected total payoff

is bounded below by

γµ
C
(γ,K) + γ1+Kµ

C
(γ,∞).

Therefore, we have

Total expected marginal benefit from deviation

≤v̄ + γ1+K(µ̄C(γ,∞)− µ
C
(γ,∞))− γµ

C
(γ,K)

<v̄ + γ1+KA− γµ
C
(γ,K),
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from property (b) above. Then from property (a), there exists γ′ ∈ (0, 1) and K̄

such that µ
C
(γ,K) > 2(v̄ +A) for every γ ≥ γ′ and K ≥ K̄. Let γ̄ = max{γ′, 1

2
},

then for every γ ∈ [γ̄, 1), we have

v̄ + γ1+KA− γµ
C
(γ,K) < 0,

which implies that deviation is not profitable and hence ŝc is an equilibrium where

the formation process converges to g.

It might be noted that Proposition 2 and Theorem 1 together do not quite

provide a complete characterization of which networks can be achieved as weak or

strong limits: if ui(θ̄,g) = 0 for some i, the results are silent about the achievability

of g. This seems entirely analogous to the situation for the familiar Folk Theorem:

strictly individually rational payoff vectors can be achieved and sub-rational payoff

vectors cannot be achieved but the status of payoff vectors that are exactly rational

(i.e. equal to the minmax payoff) is indeterminate.

With our proposed strategy profile, the underlying mechanism for convergence

to such a network can be described as a “self-fulfilling prophecy”: the agents

cooperate in order to form a network that is commonly envisioned, and they punish

any detected deviation (there can be “undetected” deviations such as i choosing 1

but j still choosing 0 for a link ij /∈ g) by opting out of the group forK periods. for

every agent, this punishment is incentive compatible once everyone else complies.

Afterwards, the agents opt back in and resume cooperation. In this way, g always

gets formed and persists no matter what the initial network was and what the

formation history has been.

An immediate yet important result from Theorem 1 is a clear criterion on

sustaining efficiency. For a strongly efficient network to be sustained in any equi-

librium, it needs to ensure a non-negative payoff for each agent. Conversely, if

a strongly efficient network yields every agent a positive payoff, then it can be

sustained in equilibrium if the agents are patient enough.

Corollary 2. If g is a strongly efficient network, and there is an equilibrium in

which the formation process converges weakly to g then ui(θ̄,g) ≥ 0 for all i. If g

is strongly efficient, ui(θ̄,g) > 0 for all i, and agents are sufficiently patient, then

there exists an equilibrium in which the formation process converges strongly to g

.
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This corollary presents a striking contrast to the argument offered by Dutta et

al.[6] that in generic cases efficiency cannot be sustained even if agents are patient

and each agent’s payoff in the strongly efficient network is positive. We provide

an example below, which is taken from Dutta et al.[6], to illustrate the difference.

Example 1. This example is taken from Dutta et al., Theorem 2[6]. Consider

I = {1, 2, 3} and assume that all agents are of the same type. The payoff structure

is symmetric: for every i, j, k, ui(θ̄,∅) = 0, ui(θ̄, {ij}) = 2v, ui(θ̄, {ij, ik, jk}) = v,

while ui(θ̄, {ij, jk}) = 0. The unique strongly efficient network is the complete

network g = {12, 13, 23}.
[6] shows that there exists γ̄ < 1 such that if γ ∈ (γ̄, 1) then there is no pure

strategy equilibrium where the formation process converges strongly to the strongly

efficient network. This results from the constraint of agents’ knowledge on the

formation history: in [6] it is assumed that the agents only know the network

formed in the previous period and the pair of agents selected in the current period.

In our model, agents know more and this matters. To see why, consider the

strategy profile ŝc. In the punishment phase, no unilateral action can change the

network formation outcome, so we only need to inspect the incentives of agents

to deviate in the cooperation phase. Using the same methods as in the proof of

Theorem 1 and plugging in the values in this example, we can obtain a range of γ

and K to make ŝc an equilibrium: γ ∈ (0.97, 1), K ≥ 60.

At the end of this section we would like to emphasize again the importance

and significance of the monitoring structure. To sustain cooperation which leads

to efficiency over time, it is not necessary that agents know everything. The agents

need not know who committed a deviation or when a deviation occurred, but it is

vital that they know if someone has deviated in the recent past and whether they

are supposed to carry out punishment. A public signal device (newspaper, TV,

website, etc.) can convey such information across the group of agents and ensure a

limited but effective form of cooperation. As a practical implication, our analysis

strongly suggests that modern media, with its function of public broadcast, plays

a crucial role in enhancing social welfare.
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4.5 Robustness of Equilibrium

Agents are not always rational and do not always choose actions independently

of others, so it seems important to ask whether results such as ours are robust to

“mistakes” and to coalitional deviations (in addition to individual deviations). In

this section, we demonstrate robustness of our results with respect to individual

mistakes and coalitional deviations.

We consider a model in which agents tremble uniformly. Fix a strategy profile

s and fix ϵ > 0. Write sϵ for the mixed strategy profile in which each agent i

plays si with probability (1− ϵ) and chooses a random action with probability ϵ.

Let Qϵ be the probability distribution on the corresponding stochastic process of

networks. Intuitively, if ϵ is sufficiently small, then the network formation process

will lead to g but will not remain there because agents will randomly break links

in g “by accident”, However, following such a breakage the process will lead back

to g. Hence, if ϵ is small, g will probably occur “most of the time”. The following

proposition formalizes this result.

Proposition 3. Fix a network g such that ui(θ̄,g) > 0 for all i and an integer

K and a monitoring structure y that satisfy the conditions of Theorem 1. Fix

a, b > 0. There exists γ̄ ∈ (0, 1) such that if γ ∈ [γ̄, 1) and ŝc is the corresponding

equilibrium strategy constructed in Theorem 1, then

lim
T→∞

inf Qϵ(
|{t : 1 ≤ t ≤ T,g(t) = g}|

T
> 1− a) > 1− b

for all sufficiently small ϵ.

Proof. We first prove that ŝc is an equilibrium when ϵ is sufficiently small. Refer-

ring to the proof of Theorem 1, it suffices to show that Lemma 1 still holds under

this alternative environment with a function ϵ(γ). For part (a) of Lemma 1, let

t∗ be the smallest t satisfying N(N−1)
2

(1 − 2
N(N−1)

)t < 1, and following a similar

argument as in the proof of Theorem 1, we know that i’s expected payoff in g(t)

is bounded below by

W (1− (1− ϵ)Nt) +
N(N − 1)

2
(1− 2

N(N − 1)
)tW (1− ϵ)Nt

+ (1− N(N − 1)

2
(1− 2

N(N − 1)
)t)ui(θ̄,g)(1− ϵ)Nt.
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Agent i’s total expected payoff is bounded below by

t∗−1∑
t=1

γt−1W +
∞∑

t=t∗

γt−1W (1− (1− ϵ)Nt) +
∞∑

t=t∗

γt−1N(N − 1)

2
(1− 2

N(N − 1)
)tW (1− ϵ)Nt

+
∞∑

t=t∗

(1− N(N − 1)

2
(1− 2

N(N − 1)
)t)ui(θ̄,g)(1− ϵ)Nt

=
W

1− γ
− γt∗−1(1− ϵ)Nt∗W

1− γ(1− ϵ)N
+

γt∗−1(1− ϵ)Nt∗ui(θ̄,g)

1− γ(1− ϵ)N

+
N(N − 1)

2

γt∗−1(1− ϵ)Nt∗(1− 2
N(N−1)

)t
∗
(W − ui(θ̄,g))

1− γ(1− 2
N(N−1)

)(1− ϵ)N
.

The last term has a lower bound which is independent of γ. Also, note that as

ϵ → 0, we have

W

1− γ
− γt∗−1(1− ϵ)Nt∗W

1− γ(1− ϵ)N
→ W

1− γ
− γt∗−1W

1− γ

γt∗−1(1− ϵ)Nt∗ui(θ̄,g)

1− γ(1− ϵ)N
→ γt∗−1ui(θ̄,g)

1− γ
,

and as γ → 1, we have

W

1− γ
− γt∗−1W

1− γ
→ t∗ − 1

γt∗−1ui(θ̄,g)

1− γ
→ ∞.

Hence, for every number x > 0, there exists a function ϵ(γ) such that for some

γ′ ∈ (0, 1), any (γ, ϵ) such that γ ≥ γ′ and ϵ ≤ ϵ(γ) makes agent i’s expected total

payoff higher than x. This proves part (a) of Lemma 1. Part (b) can be proved by

a similar argument.

Now we prove the limit inferior in probability. Let T̂ be a sufficiently large

integer such that T̂−K

T̂
> 1− a. We know that for every b > 0 and τ ∈ N+, when ϵ

is sufficiently small we have Qϵ( |{t:τ≤t≤τ+T̂ ,g(t)=g}|
T̂

> 1− a) > 1− b. Moreover, this

property is invariant for every time period of length nT̂ , n ∈ N+. This completes

the proof.

Next, we discuss how the additional property of stability of a network brings

about an equilibrium that prevents typical group deviations. Recall that a network
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is core-stable if there is no subgroup of agents that can form another network on

their own (without linking to any agent not in the subgroup) and provide a Pareto

improvement for the subgroup. We consider a natural class of group deviations.

Fix a sub-group of agents Î ( I and a network ĝ ∈ G(Î) . We consider a group

deviation by agents in Î in which they commit to forming ĝ (that is they agree

to form or maintain link ij if and only if ij ∈ ĝ). We refer to these deviations as

network deviations.

In the following result, we assume that the monitoring structure reveals the

remaining number of periods for the punishment phase.

Proposition 4. Fix a core-stable network g such that ui(θ̄,g) > 0 for all i. There

exists an integer K̂ and a cutoff γ̂ ∈ (0, 1) such that for every γ ∈ [γ̂, 1), there

exists M(γ) such that if K ≥ K̂ then

a. The strategy profile constructed in Theorem 1 is an equilibrium and the

formation process converges strongly to g.

b. Following any formation history with the remaining punishment phase

no longer than M(γ) periods, no proper subgroup of agents has a profitable

network deviation.

c. M(γ) is increasing in γ and limγ→1 M(γ) = ∞.

Proof. Consider a formation history with the remaining punishment phase being

K ′ periods (including the current period). By the assumption that g is core-stable,

for every Î ( I and associated ĝ, there exists an agent i such that ui(θ̄, ĝ) −
ui(θ̄,g) < 0. Fix one such i. From the current period onwards, if the agents follow

ŝc, i’s total payoff is bounded below by

γK′
µ
C
(γ,∞).

Let V > 0 denote the largest possible payoff of any agent in any network in one

period. With a little abuse of notation, let g(t) denote the network formed t

periods from the current period. If the group of agents Î follow s′(Î , ĝ), i’s payoff

in g(t) is bounded above by

1{g(t) ̸= ĝ}V + (1− 1{g(t) ̸= ĝ})ui(θ̄, ĝ).
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If the group of agents Î follow s′(Î , ĝ), the probability that g(t) ̸= ĝ is bounded

above by min{N(N−1)
2

(1− 2
N(N−1)

)t+1, 1}. For all t such that N(N−1)
2

(1− 2
N(N−1)

)t+1 <

1, i’s expected payoff in g(t) is bounded above by

N(N − 1)

2
(1− 2

N(N − 1)
)t+1V + (1− N(N − 1)

2
(1− 2

N(N − 1)
)t+1)ui(θ̄, ĝ).

Following a similar argument to the proof of Lemma 1, there exists D > 0 (regard-

less of γ) such that i’s discounted expected total payoff from s′(Î , ĝ) is less than

D +
∑∞

t=0 γ
tui(θ̄, ĝ). Now, the difference in i’s payoff between the two strategy

profiles is bounded above by

D +
∞∑
t=0

γtui(θ̄, ĝ)− γK′
µ
C
(γ,∞).

With a similar argument to above, there exists E > 0 (regardless of γ) such that

µ
C
(γ,∞) >

∑∞
t=0 γ

tui(θ̄,g) − E. Hence, the difference in i’s payoff between the

two strategy profiles is bounded above by

D + E +
∞∑
t=0

γtui(θ̄, ĝ)− γK′
∞∑
t=0

γtui(θ̄,g)

=D + E +
K′−1∑
t=0

γtui(θ̄, ĝ) + γK′
(

∞∑
t=0

γt(ui(θ̄, ĝ)− ui(θ̄,g)))

≤D + E +
K′−1∑
t=0

γtui(θ̄, ĝ) +
γK′

F

1− γ

≤D + E +K ′V +
γK′

F

1− γ
,

where F = maxÎ,ĝ{ui(θ̄, ĝ)−ui(θ̄,g)}. Since the total number of networks is finite,

we know that F exists and that F < 0.

Let γ′′ be such that F
1−γ′′ = −|D + E| − 1, and let K̄ and γ̄ be as derived in

the proof of Theorem 1. Let K̂ = K̄ and let γ̂ = max{γ′′, γ̄}. For every γ ≥ γ̂, let

M(γ) be the largest K ′ ∈ N such that D + E +K ′V + γK′
F

1−γ
< 0. We know that

M(γ) exists because K ′ = 0 always satisfies the inequality.

Now, given K̂ and any γ ≥ γ̂, ŝc is an equilibrium where the formation process

converges to g by Theorem 1. From the construction ofM(γ), given any Î following

any formation history with the remaining punishment phase no longer than M(γ)
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periods, there is always an agent in Î ( I and associated ĝ whose payoff under

strategy profile s′(Î , ĝ) is strictly lower than that under strategy profile ŝc. Hence,

ŝc is immune to s′(Î , ĝ). Finally, since the term D+E+K ′V + γK′
F

1−γ
is increasing in

K ′ and decreasing in γ, M(γ) is increasing in γ; the fact that limγ→1
γK′

F
1−γ

= −∞
for every given K ′ ensures that limγ→1 M(γ) = ∞. This completes the proof.

To understand what this proposition means, note that K̂ is the length of the

punishment period. In the equilibrium strategies that we have constructed, agents

receive a payoff of 0 during the punishment phase. Hence, if K̂ were infinite,

or even extremely long, groups would prefer to deviate rather than suffer such a

long punishment. However once K̂ is given, part b guarantees that if agents are

sufficiently patient, groups of agents will be willing to endure a punishment of

length K̂ rather than coordinate on a network deviation.

5 Foresight in the Connections Model

We have shown that as long as a network secures a positive payoff for every agent,

it can be sustained in an equilibrium if the monitoring structure is fine enough

and agents are sufficiently patient. We now apply this result and the techniques

to evaluate the sustainability of efficient entworks in the widely studied connec-

tions model introduced by Jackson and Wolinsky[18]. Jackson and Wolinsky[18]

assume that agents are homogeneous and myopic and they argue that the strongly

efficient network is either empty, a star or a clique. We allow for heteregenous and

foresighted agents and find a much richer set of strongly efficient networks.

Because the general case is cumbersome we first discuss in detail a two-type

environment to clearly explain the key results without loss of much generality

and to avoid technical redundancy. We will demonstrate how the analysis can be

extended to a generalized model with multiple types at the end of this section.

5.1 Characterization of Strongly Efficient Networks

Assume that each agent can be one of two types, α or β. Let nα, nβ > 0 denote

the number of type α agents and that of type β agents correspondingly. Without

loss of generality, we assume that f(α) > f(β). Let ge denote the strongly efficient
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network. Before stating the formal result, we first present a graphical illustration

of the topology of the strongly efficient network under different parameter values

in Figure 1.

Figure 1: Strongly efficient network in connections model

The following theorem fomally characerizes the conditions on model parameters

that lead to each strongly efficient network topology.

Theorem 2. ge can be described as follows:

a. If (1− δ)f(β) > c, then ge is a clique encompassing every agent.

b. If (1− δ)f(α)+f(β)
2

> c > (1− δ)f(β), then ge is such that every two type α

agents are linked, and every type α agent is linked with every type β agent,

but no type β agent is linked with another type β agent.

c. If (1−δ)f(α) > c > (1−δ)f(α)+f(β)
2

, and (1+δ(nα−1))f(α)+(1+δ(nα+

nβ − 2))f(β) > 2c, then ge is such that every two type α agents are linked,

and every type β agent is linked with the same type α agent, but no type β

agent is linked with another type β agent.
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d. If (1−δ)f(α) > c > (1−δ)f(α)+f(β)
2

, and (1+δ(nα−1))f(α)+(1+δ(nα+

nβ − 2))f(β) < 2c, then ge is a clique encompassing every type α agent but

no type β agent.

e. If (1−δ)f(α) < c, f(α)+f(β)+δ[(nβ−1)f(β)+(nα−1)(f(α)+f(β))] > 2c,

and

2(nα − 1)f(α) + nβ(f(α) + f(β)) + δ[(nα − 1)(nα − 2)f(α) + nβ(nβ − 1)f(β)

+ nβ(nα − 1)(f(α) + f(β))]− 2(nα + nβ − 1)c > 0,

then ge is a star encompassing every agent, with a type α agent as the center.

f. If (1− δ)f(α) < c, and

(1 + δ(nα − 1))f(α) + (1 + δ(nα + nβ − 2))f(β) < 2c < f(α)(2 + δ(nα − 2)),

then ge is a star encompassing every type α agent but no type β agent.

g. If (1− δ)f(α) < c, and

max{2(nα − 1)f(α) + nβ(f(α) + f(β)) + δ[(nα − 1)(nα − 2)f(α) + nβ(nβ − 1)f(β)

+ nβ(nα − 1)(f(α) + f(β))]− 2(nα + nβ − 1)c, f(α)(2 + δ(nα − 2))− 2c} < 0,

then ge is the empty network.

Despite the lengthy conditions on the payoffs from different types, the under-

lying argument for the above characterization is straightforward. According to

how much benefit each type can provide via a connection, we can categorize types

in a systematic way and assign linkage correspondingly to maximize the sum of

total payoffs. For the high types among which a direct link always brings benefits

that are higher than the maintenance cost, a clique must be formed among them

in any strongly efficient network. The next category contains the types for which

any single link to one of the highest types is socially beneficial, but links among

themselves are not. As a result, these types will not link directly to themselves

but will form every possible link to agents belonging to the first category. When

the benefit from a type gets even lower, such types can only add to social welfare

by having only one link to one agent of the strictly highest type, thus minimizing

the cost and receiving/providing most of the benefit via indirect connection. Last
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but not least, agents of the lowest types cannot increase the social welfare in any

way and will remain singletons in a strongly efficient network.

The connected component of the strongly efficient network exhibits a “core-

periphery” pattern in topology. The core, which corresponds to the first category,

consists of agents with the highest connectivity degree and the largest clustering

coefficient. The periphery agents each have one or more links with the core agents,

depending on the value structure. The detailed proof of the theorem is provided

below.

Proof. (a) The result is clear since (1− δ)f(β) > c implies that the benefit from

any link (bounded below by 2(1− δ)f(β)) is greater than the associated cost (2c).

(b) If (1−δ)f(α)+f(β)
2

> c, a link between two type α agents or one type α agent

and one type β agent always increases the total payoff in the network. Given that

there is a link between these agents, c > (1 − δ)f(β) implies that a link between

two type β agents always decreases the total payoff in the network. Hence, ge is

as described in the result.

(c) The first condition implies that any pair of type α agents are linked in ge.

Furthermore, for n type β agents with m1,m2, · · · ,mn links respectively (where

m1,m2, · · · ,mn are positive integers), the largest possible contribution to total

payoff is

n∑
k=1

[mk(f(α) + f(β)) + δ((nα −mk)(f(α) + f(β)) + (nβ − 1)2f(β))− 2mkc].

Given the condition c > (1− δ)f(α)+f(β)
2

, the above value is maximized at mk = 1

for k = 1, 2, · · · , n. This upper bound is reached when all n type β agents are

linked to the same type α agent. It is not difficult to see that if the contribution

by n type β agents is positive, then that by n+ 1 connected type β agents is also

positive and larger. Hence, in ge, either no type β agent is connected, or every type

β agent is linked to the same type α agent. The condition (1 + δ(nα − 1))f(α) +

(1 + δ(nα + nβ − 2))f(β) > 2c implies that the contribution by nβ type β agents

is positive, and hence ge is as described in the result.

(d) It follows from the proof of (c).

(e) First, we establish the following lemma.

Lemma 2. Any strongly efficient network has at most one non-empty component.
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Proof. Suppose that there exists some strongly efficient network that has two

non-empty components C1 and C2. For component m (m = 1, 2), let im denote

(one of) the agent(s) who has the highest payoff in component Cm. Since the

network is strongly efficient, we know that this payoff is non-negative for m = 1, 2.

Let Dm be the set of links that im has in component Cm. for every imj ∈ Dm and

every D′
m ⊂ Dm − imj, define

∆um(imj,D
′
m) = uim(θ̄−im , (Cm \Dm) ∪D′

m)− uim(θ̄−im , (Cm \Dm) ∪D′
m − imj).

This term denotes the marginal payoff of i from link imj givenD′
m. It is not difficult

to see that for D′′
m ⊂ D′

m, ∆um(imj,D
′′
m) ≥ ∆um(imj,D

′
m). Since agent im’s payoff

is non-negative, it follows that there must exist jm such that ∆um(imj,∅) ≥ 0.

Consider the network C1∪C2+ j1j2. For j1, the marginal payoff from link j1j2

is strictly larger than ∆u2(i2j2,∅); similarly for j2, the marginal payoff from link

j1j2 is strictly larger than ∆u1(i1j1,∅). Hence, the total payoff in this network

is strictly higher than that in the original network C1 ∪ C2, which contradicts the

assumption that C1 ∪ C2 is strongly efficient.

We then show that if (1 − δ)f(α) < c, for every non-empty component g, the

total payoff in this component is weakly less than that in a star component with

a type α agent as the center, denoted g∗. Let kd
αα, k

d
αβ, k

d
ββ denote the number

of links between two type α agents, one type α agent and one type β agent, and

two type β agents respectively. Let kind
αα , k

ind
αβ , k

ind
ββ denote the number of shortest

indirect paths between two agents in the same three cases above. Let ν(g) and

ν(g∗) denote the total payoff in the original component and the star component

respectively. Note that the length of any indirect path is at least 2, and thus we

have

ν(g) ≤(kd
αα + δkind

αα )2f(α) + (kd
αβ + δkind

αβ )(f(α) + f(β)) + (kd
ββ + δkind

ββ )2f(β)

− 2(kd
αα + kd

αβ + kd
ββ)c

ν(g∗) =(nα − 1 + δ
(nα − 1)(nα − 2)

2
)2f(α) + (nβ + δnβ(nα − 1))(f(α) + f(β))

+ δ
nβ(nβ − 1)

2
2f(β)− 2(nα + nβ − 1)c.
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Note that

kd
αα + kind

αα =
nα(nα − 1)

2

kd
αβ + kind

αβ = nαnβ

kd
ββ + kind

ββ =
nβ(nβ − 1)

2
.

Then we have

ν(g)− ν(g∗) ≤(1− δ)((kd
αα − (nα − 1))2f(α) + (kd

αβ − nβ)(f(α) + f(β)) + kd
ββ2f(β))

− 2(kd
αα + kd

αβ + kd
ββ − (nα + nβ − 1))c

≤2(kd
αα + kd

αβ + kd
ββ − (nα + nβ − 1))((1− δ)f(α)− c)

≤0.

Finally, note that equality is achieved if and only if (1) kd
αβ = kβ, kd

ββ = 0,

kd
αα + kd

αβ + kd
ββ = nα + nβ − 1 and (2) there is no (shortest) indirect path with

length greater than two between any two type α agents. These two conditions are

satisfied if and only if g is also a star component with a type α agent as the center.

It is clear that if a star component with a type α agent as the center results

in a positive total payoff, then adding an agent of type α as the periphery will

increase the total payoff; moreover, if the marginal payoff brought about by all

the type β agents in the star component is positive, then adding an agent of type

β as the periphery will increase the total payoff. Hence, ge can only be one of

the following three: (1) the empty network, (2) a star encompassing only type α

agents, and (3) a star encompassing all agents, with a type α agent as the center.

The second and the third conditions in the result ensure that the marginal payoff

brought about by all the type β agents is positive, and that (3) has a positive total

payoff. Hence, (3) is ge.

(f) It follows from the proof of (e).

(g) It follows from the proof of (e).

5.2 Strong Efficiency and Core-Stability

The connections model also allows us to investigate the relation between a strongly

efficient network and a core-stable network. Note that these two concepts do not

imply one another. In a strongly efficient network, there may be a subgroup of
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agents that can improve the payoff of each member by “local autonomy”: for

instance, the center of a star will be strictly better off staying a singleton if all

periphery agents are of low type. On the other hand, even though the agents

cannot improve everyone’s payoff in a core-stable network, there may be a way to

improve the total payoff. An example would be to switch the center of a star from

a low type agent to a high type one.

In this section, we establish necessary and sufficient conditions for a strongly

efficient network to be core-stable. It is helpful to first compute the largest possible

one-period payoff an agent of each type can get in any network.

Proposition 5. For θ ∈ α, β let V (θ) denote the maximum payoff that an agent

of type θ can obtain in any network in a single period. We have:

a. If (1− δ)f(β) > c, then

V (α) = (nα − 1)f(α) + nβf(β)− (nα + nβ − 1)c

V (β) = nαf(α) + (nβ − 1)f(β)− (nα + nβ − 1)c.

b. If (1− δ)f(α) > c > (1− δ)f(β), then

V (α) = (nα − 1)f(α) + δnβf(β)− (nα − 1)c

V (β) = nαf(α) + δ(nβ − 1)f(β)− nαc.

c. If min{f(α) + δ((nα − 2)f(α) + nβf(β)), f(α) + δ((nα − 1)f(α) + (nβ −
1)f(β))} > c > (1− δ)f(α), then

V (α) = f(α) + δ((nα − 2)f(α) + nβf(β))− c

V (β) = f(α) + δ((nα − 1)f(α) + (nβ − 1)f(β))− c.

d. If f(α) + δ((nα − 1)f(α) + (nβ − 1)f(β)) > c > max{f(α) + δ((nα −
2)f(α) + nβf(β)), (1− δ)f(α)}, then

V (α) = 0

V (β) = f(α) + δ((nα − 1)f(α) + (nβ − 1)f(β))− c.
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e. If max{f(α) + δ((nα − 1)f(α) + (nβ − 1)f(β)), f(α) + δ((nα − 2)f(α) +

nβf(β)), (1− δ)f(α)} < c, then

V (α) = 0

V (β) = 0.

Proof. (a) Let V̂ (θ,m) be the largest possible payoff of an agent of type θ with

m links. We have

V̂ (α,m) =
0, if m = 0

mf(α) + δ((nα − 1−m)f(α) + nβf(β))−mc, if 0 < m ≤ nα − 1

(nα − 1)f(α) + (m− (nα − 1))f(β) + δ(nα + nβ − 1−m)f(β)−mc, otherwise

V̂ (β,m) =
0, if m = 0

mf(α) + δ((nα −m)f(α) + nβf(β))−mc, if m ≤ nα

nαf(α) + (m− nα)f(β) + δ(nα + nβ − 1−m)f(β)−mc, otherwise.

It is clear that these largest possible payoffs are achievable (for instance, let

the agent be a periphery agent in a star with a type α agent as the center, and

form the rest of the m links first with type α agents, then with type β agents if

she is already linked with every type α agent.). If (1 − δ)f(β) > c, for an agent

of either type her payoff is maximized when she makes every possible link, hence

V (α) and V (β) are as shown in the result.

(b) If (1 − δ)f(α) > c > (1 − δ)f(β), for an agent of either type her payoff

is maximized when she links with every type α agent but with no type β agent,

hence V (α) and V (β) are as shown in the result.

(c) If c > (1 − δ)f(α), given that an agent is connected (not a singleton), her

largest payoff is higher when she has fewer links. Hence, her payoff is V̂ (θ, 1) if

V̂ (θ, 1) ≥ 0 and 0 otherwise. Hence V (α) and V (β) are as shown in the result.

(d) It follows from the proof of (c).

(e) It follows from the proof of (c).

We can see from the proof above that the largest payoff an agent obtains from

a network is closely related to the network topology. Hence, if a network offers the

largest possible payoff to most of the agents, it is very likely to be core-stable since
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those agents’ payoffs cannot be improved further. The final criterion of stability

then rests on whether the few agents that do not get the highest possible payoff can

form a beneficial coalition. Using this argument, we inspect the strongly efficient

network in every possible type vector and present the result below.

Proposition 6. Consider cases (a) – (g) in Theorem 2. We have:

a, d, g. ge is core-stable.

b. ge is core-stable if and only if f(β) ≥ c.

c. ge is core-stable if and only if a network that links one type α agent to all

the type β agents yields the α agent a non-negative payoff.

e. ge is core-stable if and only if a network that has a type α agent at the

center yields the α agent a non-negative payoff.

f. ge is core-stable if and only if f(α) ≥ c.

Proof. (a)(d)(g) The cases (a) and (g) are clear. For (d), suppose that ge is

not core-stable, it then follows that any blocking group I ′ (with network g′) must

contain at least one type α agent, but not all type α agents. Consider the network

g′ that blocks ge. Since every agent in I ′ has a weakly higher payoff in g′ than

in ge and some agent in I ′ has a strictly higher payoff in g′ than in ge, the total

payoff of agents in I ′ must be strictly higher than that in ge. By Theorem 2, we

can re-organize g′ into a clique with only type α agents to yield an even higher

total payoff. However, if a clique with only type α agents has a positive total

payoff, then it is impossible for a proper subset of these agents to form a clique

with a higher total payoff than their total payoff in the original clique. Hence we

have a contradiction.

(b) If f(β) < c, then ge is not core-stable because a clique formed by all

type α agents blocks ge. Suppose that f(β) ≥ c and that ge is not core-stable,

then any blocking group I ′ either only contains type α agents, or contains all the

agents because each type β agent in ge gets payoff V (β), and getting V (β) requires

connection to every other agent. Both cases contradict the fact that ge is strongly

efficient.

(c) Let i denote the type α agent linking with all the type β agents. If i

has a negative payoff, then ge is not core-stable because {i} blocks ge. Suppose
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that i has a non-negative payoff and that ge is not core-stable, then any blocking

group I ′ either only contains no type α agent other than i and at least one type

β agent, or contains all the agents because each type α agent other than i in ge

gets payoff V (α), and getting V (α) requires connection to every other agent. The

second case contradicts the fact that ge is strongly efficient. In the first case, note

that the largest payoff of any type β agent in I ′ is strictly less than V̂ (β, 1) (since

c > (1− δ)f(β)), which is the payoff of every type β agent in ge. Hence we again

have a contradiction.

(e) Let j denote the type α agent at the center. If j has a negative payoff,

then ge is not core-stable because {j} blocks ge. Suppose that j has a non-

negative payoff and that ge is not core-stable, then any blocking group I ′ either

only contains j, or contains all the agents because each agent other than j in ge

gets payoff V (α) (or V (β)), and getting V (α) (or V (β)) requires connection to

every other agent. The first case contradicts the assumptions that I ′ blocks ge

and j has a non-negative payoff in ge, and the second case contradicts the fact

that ge is strongly efficient.

(f) If f(α) < c, then ge is not core-stable because the center agent in ge blocks

ge. Suppose that f(α) ≥ c and that ge is not core-stable, it then follows that any

blocking group I ′ (with network g′) must contain at least one type α agent, but

not all type α agents. Consider the network g′ that blocks ge. Since every agent

in I ′ has a weakly higher payoff in g′ than in ge and some agent in I ′ has a strictly

higher payoff in g′ than in ge, the total payoff of agents in I ′ must be strictly

higher than that in ge. By Proposition 2, we can re-organize g′ into a star with

only type α agents to yield an even higher total payoff. However, if f(α) ≥ c, it

is impossible for a proper subset of the type α agents to form a star with a higher

total payoff than their total payoff in ge. Hence we have a contradiction.

The key to whether a strongly efficient network is core-stable is its “weakest

link”: the agent maintaining the most links but enjoying the smallest net payoff.

If this particular agent gets a negative payoff, she would prefer to simply sever all

her links and remain a singleton.
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5.3 Effect of Spatial Discount

A crucial factor in the connections model is the spatial discount factor δ. It

determines the rate of payoff depreciation as two agents become further apart

in connection, and hence influences an agent’s incentives of directly linking to

another already connected agent. As a result, a change in δ affects every connected

agent’s payoff and has a non-negligible impact on the set of sustainable networks

in equilibrium. The importance of the spatial discount in a static environment

and a dynamic one with myopia has been noted in Jackson and Wolinsky[18] and

Song and van der Schaar[31]. In the dynamics with foresight, the role of δ becomes

even more important than the previous cases because it enters the payoff an agent

obtains for every period. As it turns out, the set of sustainable networks changes

monotonically with the value of δ.

Given θ̄, let G(δ) denote the set of networks g for which there is a cutoff

γ̄ ∈ (0, 1) such that if γ ∈ [γ̄, 1), then there exists an equilibrium in which the

formation process converges strongly to g.

Proposition 7. If δ1 > δ2, then G(δ1) ⊃ G(δ2).

Proof. For every g ∈ G(δ2), it follows from Theorem 1(a) that every connected

agent in g gets a non-negative payoff when δ = δ2. Since δ1 > δ2, every connected

agent in g gets a positive payoff when δ = δ1. Then by Theorem 1 we know that

g ∈ G(δ1).

Although the set of networks that are sustainable in equilibrium is monotone

in δ, the strongly efficient networks that are sustainable in equilibrium is not

monotone in δ. Consider the following example: f(α) = 3, f(β) = 0.5, c = 2,

nα = 1 and nβ = 3. From the previous analysis, we know that the strongly

efficient network is either a star with the type α agent as the center, or empty. On

one hand, when δ is low (for instance δ = 0.1) the efficient network is empty and

clearly can be supported in equilibrium. On the other hand, when δ is high (for

instance δ = 0.8) the efficient network is a star. However, it is clear that a star

network cannot be supported in equilibrium since the center agent has a negative

payoff. Even though a higher δ sustains a larger set of networks, the strongly

efficient network changes with δ as well.
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The spatial discount also partially determines the required patience level of

agents to sustain a network in equilibrium. When δ changes in a way that form-

ing/maintaining links becomes more beneficial to oneself in every period, every

connected agent in a network has higher incentive, and at the same time needs

less patience, to sustain that network in the long run. We demonstrate this by us-

ing our constructed equilibrium ŝc. Given θ̄, K and g, let γ(δ) denote the smallest

γ such that ŝc is an equilibrium (if such γ exists) under spatial discount δ.

Proposition 8. There exists δ̂ ≤ 1 such that for every δ1, δ2 ∈ [0, δ̂] such that

δ1 > δ2 and both γ(δ1) and γ(δ2) exist, γ(δ1) < γ(δ2).

Proof. Note that the only incentive problem faced by an agent is whether to sever

or refuse to form a link in g during the cooperation phase. Doing so saves the agent

the cost c, and the agent’s loss in benefit has the form of

L∑
l=1

(δal − δbl)f(θjl)

where al ∈ N, bl ∈ N ∪ {∞} satisfy al < bl. When bl = ∞, clearly δal − δbl is

increasing in δ. When bl ∈ N, we have

d(δal − δbl)

dδ
= alδ

al−1 − blδ
bl−1 = δal−1(al − blδ

bl−al)

This derivative is positive when δ is sufficiently small. In other words, the benefit

from an existing link is increasing in δ when δ is sufficiently small. Let δ̂ ≤ 1 be

the largest δ such that every δ ∈ [0, δ̂] satisfies this property.

Consider δ1, δ2 ∈ [0, δ̂] such that δ1 > δ2 and both γ(δ1) and γ(δ2) exist, and

γ ≥ γ(δ2). Note that by the above property, in any period during the cooperation

phase, the benefit from following the equilibrium strategy in the current period

and in every subsequent period is increasing in δ, and the cost stays the same.

Hence, if ŝycc is an equilibrium given δ2 and γ, it must also be an equilibrium given

δ1 and γ. We can then conclude that γ(δ1) < γ(δ2).

5.4 Generalized Connections Model

In this section, we generalize the above two-type connections model to a much

richer multi-type environment. Consider a type set Θ with finitely many types, and
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let the payoff of agent i from connecting to agent j be f(θj) before spatial discount.

Our results on the unique efficient network and stability can be easily extended to

this model. The unique efficient network ge has a general core-periphery structure,

characterized by a partition of agents {I1, I2, I3, I4} induced by a triplet of types

{θ1, θ2, θ3} such that f(θ1) ≥ f(θ2) ≥ f(θ3) :

a. Core I1 = {i : f(θi) ≥ f(θ1)}: the maximal subset of inter-linked agents.

b. Periphery I I2 = {i : f(θ2) ≤ f(θi) < f(θ1)}: the maximal subset of

agents that do not belong to I1 but link to every agent of some type(s) in I1.

c. Periphery II I3 = {i : f(θ3) ≤ f(θi) < f(θ2)}: the maximal subset of

agents that do not belong to I1 ∪ I2 but link to the same agent in I1.

d. Singleton I4 = {i : f(θi) < f(θ3)}: the maximal subset of agents that

do not link to any other agent.

In the unique efficient network all agents in the core are linked to each other, all

agents in periphery I are linked to all agents of at least one type in the core, all

agents in periphery II are linked and only linked to the same agent in the core,

and agents that are singletons are unlinked. Figure 2 below illustrates a sample

core-periphery network, with one type in each category.

Figure 2: Sample core-periphery network

The type cutoffs, {θ1, θ2, θ3}, are determined in a similar way to the two-

type model, only with more tedious calculations on an agent’s maximum possible

contribution to the total payoff of the group. A rough intuition for this result

is that an agent of a higher type takes more responsibility, in the sense that she
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should form more links to create more value for the greater good. The overall

distinguishing features of the efficient network, especially when the number of

agents gets large, include a small diameter, a large ratio between number of links

and number of agents, and a large ratio of number of “triangles” (connected triples

of agents) and number of agents. We show in the next section that in realistic

situations where the connections model applies, the level of coordination among

individuals is significantly higher than predicted by previous theories, and that

our model with foresight can account for a considerable proportion of cooperation

behavior in these endogenously formed networks.

Next, we can derive a necessary and sufficient condition for the efficient network

to be core-stable: an efficient network is core-stable if and only if the agent(s) of

the highest type has a non-negative payoff. The argument underlying the “if” part

of this result (the “only if” part is clear) is similar to the proof of Proposition 5.

Suppose that there is a blocking group I ′ and a corresponding network g′ on I ′

that yields a weakly higher payoff for every agent in I ′ and a strictly higher payoff

for at least one agent in I ′. We can always re-organize g′ according to Theorem

2 to obtain a weakly higher total payoff for the group I ′; then the agent with the

highest payoff in the new network must be at least as better-off as she is in ge.

This agent cannot belong to I2 or I3 since the agents in these two categories in ge

have already enjoyed the unique highest possible payoff that can only be provided

by ge; however, if this agent belongs to I1, then it must be the case that some other

agent in I2 gets a lower payoff than in ge, a contradiction. An important message

conveyed by this result is that for efficiency to be achieved in equilibrium and to

prevent coalitional deviation, it is sufficient to focus on the agents of the highest

type, ensuring that their cost of maintaining links are covered by the benefit from

connection.

5.5 Empirical Comparisons

We have provided a full characterization of the strongly efficient network in a

standard connections model with heterogeneous agents, in which we find that such

networks generally exhibit a “core-periphery” structure. Prominent features of

such network topologies in terms of several descriptive statistics are: (1) a large

average local clustering coefficient (ALCC), measured by the number of pairs of
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linked neighbors devided by the number of possible pairs of neighbors; (2) a large

global clustering coefficient, measured by the number of closed triangles devided

by the number of triangles; (3) a short diameter (D), measured by the number of

links in the longest of all shortest paths between any two agents). Both clustering

coefficients indicate the degree to which small groups of agents in a network tend

to keep close ties to each other, and the diameter is an index of the entire network’s

density. Note that a large clustering coefficient does not guarantee a small diam-

eter. For instance, a “chain” network created by connecting many small cliques

has a large clustering coefficient but a large diameter.

Our findings are consistent with data collected from existing real networks.

To see this, we compare our predictions with data obtained from sample social

networks from Facebook and collaboration networks of Arxiv High Energy Physics

(AHEP) 1, and also with simulated networks following models with myopic agents,

using pairwise stability introduced by Jackson and Wolinsky[18] as the solution

concept in each period. In the simulation “Myopic 1”, we assume that the payoff

from connecting to any one agent before spatial discount is 10, the link maintenance

cost is 5, and the spatial discount factor is 0.6. In the simulation “Myopic 2”, we

assume that there are three types of agents; connecting to each type yields a payoff

of 16, 10 and 6 before spatial discount respectively, and the cost and the spatial

discount factor remain the same. The ratio of types is 1 : 2 : 3, that is type 1, 2 and

3 agents account for 1
6
, 1

3
and 1

2
of the population correspondingly. The simulated

network formation process is run for a sufficiently long time such that each pair of

agents is selected at least twice in expectation. The “Foresighted Model” column

shows descriptive statistics for the strongly efficient network in our model, with

the same group size and type distribution as “Myopic 2”. Table 1 below provides

summary statistics on the networks and Figure 3 illustrates the actual network

topology in AHEP2. In Table 1, the entry “90% D” represents the 90th percentile

in the distribution of path length.

We find that the actual networks recorded are considerably closer to those pre-

dicted by our model with foresighted agents than by models with myopic agents

which are representative of much previous literature. In the two models with

1Source of datasets: SNAP Datasets: Stanford Large Network Dataset Collection [23].
2This visualization of network is provided by Tim Davis at TAMU. Retrieved from

http://www.cise.ufl.edu/research/sparse/matrices/SNAP/.
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Actual Simulation
Foresighted Model

Facebook AHEP Myopic 1 Myopic 2

N 4039 12008 1000 1000 1000

ALCC 0.6055 0.6115 0.1357 0.1957 0.4251

GCC 0.2647 0.3923 0.0458 0.0756 0.3570

D 8 13 2 2 2

90% D 4.7 5.3 2 2 2

Table 1: Summary statistics of networks

myopia, the network is not clustered (small ALCC and GCC), suggesting a rela-

tively small group of “super star” agents that link to many “periphery” agents,

but showing little direct relation among the “periphery” agents. This is not true

for the actual networks (large ALCC and GCC). In contrast, the strongly efficient

network we have characterized captures this charateristics of high clustering, and

we have shown that when agents are foresighted this network can be supported in

equilibrium. It corroborates our earlier statement that our model with foresight

provides a more appropriate framework of analyzing network formation, which

leads to more realistic predictions for actual networks.

Another observation that can be made based on these results is that the formed

networks are rather dense (small D), confirming the well-studied small world phe-

nomenon. However, the diameter of an actual network is typically larger than that

predicted by the network formations models. We believe that this difference in di-

ameter results from the simplistic meeting process adopted in all this literature:

individuals in an actual network do not meet with uniform probabilities; instead,

some agents may meet more often while others only seldom. Hence, we believe

that an important topic of future research is understanding the effect of different

meeting processes on the emerging networks.
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Figure 3: AHEP network

6 Network Convergence Theorem with Incom-

plete Information

In real-life applications, agents will not usually know the types of the other agents

before they are linked to them. As we have shown in our prior work in[31], the

introduction of incomplete information leads to significant differences in agents’

strategic behavior and equilibrium network topology. In this section, we extend

the Network Convergence Theorem to the environment with incomplete informa-

tion. Surprisingly, we are able to identify an undemanding condition on the payoff

structure under which the formation process will again converge even in this setting

to the strongly efficient network in equilibrium.
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6.1 Modeling Incomplete Information

At the beginning of t = 1, each agent only knows her own type and holds the prior

belief (that types are i.i.d. according to H) on other agents’ types.

Let B = ∆(ΘN) denote the set of possible beliefs on the type vector. A (pure)

strategy of agent i is now a mapping

si : B × I − i× Y × Ω× Z → A,

with the same constraint si(·, ·, ·, 0, 0) ≡ 0. An equilibrium is similarly defined

as before, except for the additional requirement that i maximizes her expected

discounted total payoff given her belief at every period.

Let Bi : Y → B denote agent i’s belief updating function, which is a mapping

from the set of possible public signals to the set of possible beliefs. We assume

that it satisfies the following properties:

1. i knows her own type: regardless of σ(t), she puts probability 1 on her

true type.

2. i knows the type of any agent that she has been connected to: if some g

such that ij ∈ g has ever been formed in σ(t), then i always puts probability

1 on j’s true type starting from period t.

3. Agents use Bayesian updating whenever possible. We adopt the conven-

tion that when Bayes rule does not apply, agents maintain the same priors.

We now define some concepts related to the payoff structure that will be useful

in constructing equilibrium strategies later. First we define a partial equilibrium

network for a subset of agents.

Definition 6 (Partial equilibrium network). Given θ̄, a network g formed in I ′ ⊂ I

is a partial equilibrium network for I ′′ ⊂ I ′ if (1) each agent in I ′′ gets a

positive payoff from g; (2) no agent in I ′′ can increase her payoff by severing any

of her links in g.

Given a subset of agents I ′ and the associated type vector θ̄I′ , consider a

function r : Θ|I′| → GI′ . We define the following property for r:
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Definition 7 (Admissible function). We say that r is an admissible function

for I ′ if for every θ̄I′ ∈ Θ|I′|, r(θ̄I′) is a network such that (1) every non-singleton

agent in r(θ̄I′) has a positive payoff; (2) there exists a partial equilibrium network

in GI′ for the set of singleton agents in r(θ̄I′), denoted as r′(θ̄I′). We say that I ′

is admissible if there exists an admissible function r for I ′.

In a partial equilibrium network, no agent has incentive to unilaterally sever

any of her links; hence, the name “partial equilibrium”. Then (the existence of) an

admissible function essentially characterizes a particular type of agent subgroup: it

maps every type vector in the subgroup to a network that provides every connected

agent a positive payoff, and at the same time guarantees the existence of a partial

equilibrium network for the set of singleton agents. Intuitively, the former network

can be sustained in the long run when agents are patient, and the latter can

be used as a way to reward the future singleton agents for their revelation of

private information. We will construct an equilibrium strategy profile following

this argument in the next section.

In many cases, the whole agent set I is admissible. One of the simplest scenarios

is that for every type vector there exists a network yielding a positive payoff for

every agent, so that a partial equilibrium network will not even be necessary

because the set of singleton agents will be empty. For instance, consider the

connections model discussed before, and consider the following two-type scenario:

Θ = {α, β}, N = 5, f(α) > c > f(β), (1 + δ)f(β) > c, and f(α) + 3f(β) > 3c.

First, note that when there exists at least one type α agent, a partial equilibrium

network for any number of type β agents is a star network with a type α agent as

the center. Then the following function r is an admissible function for I:

r(θ̄) =

{
Star network with type α center, if at least two agents are of type α

Wheel network, otherwise.

It is easy to verify that r is indeed admissible for I. Moreover, it is also

straight forward to show that r maps θ̄ to the strongly efficient network whenever

the strongly efficient network gives every agent a positive payoff. In this type of

payoff structure, the larger N is, the more likely such a simple admissible function

for I exists. When N is large, even if f(α) and f(β) are both small relative to c,

a topology such as a star or a wheel may still ensure a positive payoff for every
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agent. In the case where r maps a type vector to some unconnected network (a

network with singleton agents), a star or a wheel can be used as partial equilibrium

networks (in the case of a star, the singleton agents in r would be placed in the

periphery).

6.2 Construction of Equilibrium Strategies

As with complete information, we explicitly construct a strategy profile that will

constitute an equilibrium when agents are sufficiently patient. First we specify the

associated monitoring structure, denoted yic. Similarly to the case with complete

information, yic measures the least informative monitoring structure needed for

our network convergence theorem.

To simplify the description of yic, we first introduce some additional notations.

For a given time period t and a given subgroup of agents I ′ ⊂ I, we denote as

I ′′1 (g, t) the subset of agents in I ′ that failed to form/maintain a link in g when

possible, and as I ′′2 (t) the subset of agents in I ′ that formed/maintained a link

between I ′ and I \ I ′. We let ĝI′ denote the clique on I ′. Finally, we say that

information is complete within I ′ if every agent knows the type of every other

agent in I ′, and that information is incomplete within I ′ otherwise. Denote these

events in period t as Oc(I
′, t) and Oic(I

′, t).

1. Y = {X0, X1, T, EC , EP} × 2I . The subset of I in the second argument

represents the subgroup of non-solitary agents, and X0, X1, T, EC , EP rep-

resent five phases with respect to this subgroup: the experimentation phase

with incomplete information, experimentation phase with complete informa-

tion, transition phase, exploitation phase with cooperation and exploitation

phase with punishment correspondingly. We will define and explain these

concepts later.

2. yic(σ(0)) = (X0, I).

3. In period t ≥ 1, for every pair of agents i, j ∈ I ′ ⊂ I:

– a. If yic(σ(t− 1)) = (X0, I
′):

Oc(I
′ \ I ′′1 (ĝI′ , t), t) → yic(σ(t)) = (T, I ′ \ I ′′1 (ĝI′), t)

Oic(I
′ \ I ′′1 (ĝI′ , t), t) → yic(σ(t)) = (X0, I

′ \ I ′′1 (ĝI′), t).
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– b. If yic(σ(t− 1)) = (X1, I
′): yic(σ(t)) = (T, I ′ \ (I ′′1 (r′(θ̄I′), t) ∪ I ′′2 (t))).

– c. If yic(σ(t − 1)) = (T, I ′): yic(σ(t)) = (EC , I
′) if r′(θ̄I′) has been the

network topology within I ′ (including no link between I ′ and I \ I ′)

for a fixed number of J consecutive periods. Otherwise, yic(σ(t)) =

(T, I ′ \ (I ′′1 (r′(θ̄I′), t) ∪ I ′′2 (t))).

– d. If yic(σ(t− 1)) = (EC , I
′):

I ′′1 (r(θ̄I′), t) ∪ I ′′2 (t) = ∅ → yic(σ(t)) = (EC , I
′)

I ′′1 (r(θ̄I′), t) ∪ I ′′2 (t) ̸= ∅ → yic(σ(t)) = (EP , I
′)

– e. If yic(σ(t − 1)) = (EP , I
′): if yic = (EP , I

′) for a fixed number of K

consecutive periods, then yic(σ(t)) = (EC , I
′). Otherwise, yic(σ(t)) =

(EP , I
′).

Essentially, the realization of yic reveals publicly the current phase of the game

and whether agents in a certain subgroup I ′ are cooperating in every phase. The

meaning of cooperation is phase-specific. In the experimentation phase, agents

are supposed to form and maintain every link within I ′ whenever possible, until

information becomes complete in I ′ which brings the game into the transition

phase. Then cooperation among agents becomes forming the network r′(θ̄I′) and

keeping it for J periods, with no link with I \ I ′ at the same time. In these

two phases, anyone who fails to cooperate will be marked as a solitary agent.

Afterwards, the game enters the exploitation phase and the public signal works in

the same way as yc in the previous section, with r(θ̄I′) as the designated network.

Now we characterize the strategy profile based on yic, denoted ŝic. For every

i, j ∈ I:

1. If max{ωij, ζij} = 1, the set of non-solitary agents I ′ is admissible and

i, j ∈ I ′, then aij = 1 if any of the following is true:

– a. yic = (X0, I
′).

– b. yic = (X1, I
′) and ij ∈ r′(θ̄I′).

– c. yic = (T, I ′) and ij ∈ r′(θ̄I′).

– d. yic = (EC , I
′) and ij ∈ r(θ̄I′).
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2. aij = 0 in all the other cases.

In this strategy profile, agents in an admissible set cooperate as much as they can

according to the public signal. First, they reveal their types by forming and main-

taining links in the experimentation phase until information becomes complete. In

the transition phase that follows, they form a partial equilibrium network r′(θ̄I′) to

provide positive payoffs to the singleton agents in network r(θ̄I′), the network that

will persist in the long run. After r′(θ̄I′) has existed for a specified length of time,

the agents enter the exploitation phase in which the formation process ultimately

converges to r(θ̄I′). Agents who do not conform before the exploitation phase are

categorized as solitary agents and are left as singletons for ever, and those who

deviate during the exploitation phase only get temporary punishment. Same as

before, the exact deviating agent(s) cannot be identified, so any punishment would

be placed on pairs of agents rather than individual ones.

6.3 The Network Convergence Theorem with Incomplete

Information

In an environment with incomplete information, the Network Convergence The-

orem still holds in an admissible set of agents, but our constructed equilibrium

strategy profile leads to weak convergence only. The proof below shows that when

agents are sufficiently patient, (1) there exists a length of punishment K in the

exploitation phase to ensure cooperation and (2) there exists a length of reward

J in the transition phase to ensure information revelation for the singleton agents

in r(θ̄) in the experimentation phase.

Theorem 3. If I is admissible, then for every admissible function r for I there

exists a cutoff γ̄ ∈ (0, 1) such that if γ ∈ [γ̄, 1) and the true profile of types is θ̄,

then there exists an equilibrium in which the formation process converges weakly

to r(θ̄).

Proof. Consider the monitoring structure yic and the strategy profile ŝic. It suf-

fices to show that for some J and K, there exists γ̄ ∈ (0, 1) such that for all

γ ∈ [γ̄, 1), ŝic is an equilibrium. We need to check for sequential rationality given

any possible formation history. We proceed in the following order:
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In the exploitation phase: since information is complete within I ′′, sequential

rationality is given by Theorem 1.

Given any formation history, for every solitary agent: given that no other agent

will agree to form a link with her, her subsequent action will not affect her payoff,

and hence sequential rationality is satisfied.

Given any formation history such that the set of non-solitary agents is not

admissible, for every non-solitary agent: given that every other agent is choosing

action 0, her subsequent action will not affect her payoff, and hence sequential

rationality is satisfied.

For every non-solitary agent in an admissible set I ′ in the transition phase: we

need to discuss two cases. Following the proof of Theorem 1, we argue as follows:

1. For every singleton agent i in r(θ̄I′): since I
′ is admissible, i’s payoff in this

phase is positive (and bounded away from zero, from the assumptions that

Θ is finite and I is finite) for J periods in r′(θ̄I′) if she follows the prescribed

strategy. Also, her maximum expected loss (negative payoff) before r′(θ̄I′)

is formed for the first time and in the exploitation phase is bounded above

regardless of γ. Hence, given a sufficiently large J and a sufficiently large γ,

i does not have the incentive to deviate before r′(θ̄I′) is formed for the first

time and become a solitary agent (the payoff from which is bounded above

regardless of γ). After r′(θ̄I′) is formed, since it is a partial equilibrium

network by assumption, there is no incentive for i to deviate and sever any

of her links.

2. For every non-singleton agent j in r(θ̄I′): given J , j’s maximum expected

loss in this phase and before r(θ̄I′) is formed in the exploitation phase is

bounded above regardless of γ. By the definition of r, j’s payoff in r(θ̄I′)

is positive (and bounded away from zero, by the same argument as above),

which realizes every period after r(θ̄I′) is formed in the exploitation phase.

Hence, given a sufficiently large γ, j does not have the incentive to deviate

in this phase and become a solitary agent.

For every non-solitary agent in an admissible set I ′ in the experimentation phase:

we need to discuss two cases. Following the proof of Theorem 1, we argue as

follows:
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1. For every singleton agent i in r(θ̄I′): i’s maximum expected loss in this

phase is bounded above regardless of γ since according to the strategy profile,

information becomes complete within finitely many periods almost surely.

Then with a similar argument to part (1) above, given a sufficiently large

J and a sufficiently large γ, i does not have the incentive to deviate and

become a solitary agent.

2. For every non-singleton agent j in r(θ̄I′): again, j’s maximum expected

loss in this phase is bounded above regardless of γ. Then with a similar

argument to part (2) above, given a sufficiently large γ, j does not have the

incentive to deviate and become a solitary agent.

This completes the proof. Note that there needs to be an upper bound on J in

generic cases: given γ, the larger J gets, the less incentive a non-solitary and

non-singleton agent in r(θ̄I′) may have for following the prescribed strategy in the

transition phase.

The reason why we are not able to show strong convergence directly is due to the

incomplete information. Under complete information, agents’ beliefs on the type

vector stay constant (on the true types) over time despite the possibly changing

public signals, which guarantees unanimous knowledge on the payoff structure.

Under incomplete information, however, the beliefs can be heterogeneous and can

evolve over time according to the realization of public signals. The evolution of

beliefs, in turn, leads to each agent forming a belief on others’ beliefs, and hence

it is difficult for them to agree on cooperation towards one network topology. No

matter how precise the public signal is (the least precise being one constant signal,

and the most precise being equal to the formation history), this potential obstacle

to coordination exists as long as there is incomplete information on the type vector

among the agents.

Similar to Corollary 1, we obtain a result on sustaining a strongly efficient

network in equilibrium.

Corollary 3. Assume that I is admissible. If r(θ̄) is strongly efficient for every θ̄,

there exists γ̄ ∈ (0, 1) such that for all γ ∈ [γ̄, 1), there exists an equilibrium where

the formation process always converges to a strongly efficient network weakly.
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6.4 Connections Model Revisited

We have discussed how introducing incomplete information into the strategic en-

vironment may have a considerable impact on the set of sustainable networks.

Constraining an agent’s knowledge on the type vector curbs her willingness to

form costly links in anticipation that such attempts may turn out to be futile.

As a result, a sustainable network under complete information may never emerge

and persist under incomplete information. Curiously, the impacts of complete

and incomplete information on the network formation process depend on agents’

patience. When agents are myopic, incomplete information can be a catalyst for

welfare improvement; when agents are very patient, it turns around to become an

impediment.

We use the previously discussed connections model to make the comparison.

Consider a connections model (with an arbitrary set of types) where the payoff of

agent i from connecting to j is f(θj) (before spatial discount), and the expectation

of payoff from a single agent is larger than the link maintenance cost: E[f(θj)] > c.

To avoid technical complications, we assume that in every network the payoff of

every connected agent is strictly positive. and that the formation history is public

knowledge: y(σ(t)) = σ(t).

Given a type vector θ̄ and a discount factor γ, let GW
c (θ̄, γ) (GS

c (θ̄, γ)) denote

the set of networks g such that there exists an equilibrium where the formation

process weakly (strongly) converges to g. Define GW
ic (θ̄, γ) and GS

ic(θ̄, γ) similarly.

Proposition 9. For every θ̄, there exists γ̄, γ ∈ (0, 1) such that:

a. if γ ∈ (0, γ), then GS
c (θ̄, γ) ⊂ GW

c (θ̄, γ) ⊂ GW
ic (θ̄, γ)

b. if γ ∈ (γ̄, 1), then GS
ic(θ̄, γ) ⊂ GW

ic (θ̄, γ) ⊂ GW
c (θ̄, γ) = GS

c (θ̄, γ)

Proof. GS
c (θ̄, γ) ⊂ GW

c (θ̄, γ) and GS
ic(θ̄, γ) ⊂ GW

ic (θ̄, γ) are clear from the defi-

nitions of strong and weak convergence. We can apply Theorem 1 to show that

GW
c (θ̄, γ) = GS

c (θ̄, γ) = {g : ui(θ̄,g) > 0 for all i} when γ is close to 1. It immedi-

ately implies that GW
ic (θ̄, γ) ⊂ GW

c (θ̄, γ) when γ is close to 1.

Now we prove that GW
c (θ̄, γ) ⊂ GW

ic (θ̄, γ) when γ is close to 0. For every

g, suppose that there exists an equilibrium sc under complete information where

the formation process converges weakly to g. Consider the following strategy

profile sic under incomplete information: following any formation history σ(t)
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which is on the equilibrium path in sc, in period t + 1 if any link ij is to be

formed/maintained according to sc, then aij = aji = 1; otherwise, aij = aji = 0.

Following any formation history that is off the equilibrium path in sc, each agent

chooses action 0 thereafter. Clearly, this strategy profile is an equilibrium following

any formation history off the equilibrium path in sc. For every formation history

on the equilibrium path in syc , it replicates the formation process according to sc.

When γ is sufficiently small, each agent is indeed taking a best response. When

link ij is to be formed/maintained according to sc, if i, j know each other’s type,

the fact that they would have chosen to form/maintain the link in sc implies that

the current payoff from the link outweighs the cost, so due to myopia i, j will

also form/maintain the link. If i, j do not know each other’s type, the prescribed

strategy profile ensures that no Bayes’ update occurs and thus their beliefs about

each other’s type remains at the prior H. By the assumption that E[f(θj)] > c,

aij = aji = 1 is a best response. When link ij is to be severed/not formed

according to sc, note that aij = aji = 0 is a Nash equilibrium in a one-shot

game and implies mutual best response. Therefore, sic is an equilibrium under

incomplete information and it produces a formation process identical to the one

under sc. We can then conclude that when γ is close to 0, if g ∈ GW
c (θ̄, γ) then

g ∈ GW
ic (θ̄, γ), which means that GW

c (θ̄, γ) ⊂ GW
ic (θ̄, γ).

When agents are very patient, the set of sustainable networks is largest when

information is complete. To the contrary, when agents are myopic, the set of

sustainable networks can be larger when information is incomplete. The reason is

that when agents are myopic they have less incentives to form links because they

do not take account of future benefits.

We conclude by showing that more networks are sustainable when agents are

“more valuable” whether or not information is complete or agents are patient.

Intuitively, when agents are more valuable, more networks can be sustained in

equilibrium because it is easier to provide a larger set of agents with a positive

payoff.

Proposition 10. Consider any two type vectors θ̄ and θ̄′. If f(θi) ≥ f(θ′i) for all

i, then for every γ ∈ (0, 1), Gn
m(θ̄, γ) ⊃ Gn

m(θ̄
′, γ), m = c, ic, n = S,W .

Proof. Consider a strategy profile s (under either information structure) such

that when the type vector is θ̄′, s is an equilibrium where the formation process
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converges (either strongly or weakly) to a network g. Modify it slightly in the

following way: whenever a link ij is supposed to be severed/not formed according

to s, agents i, j choose aij = aji = 0. Now consider the modified strategy profile s′

when the type vector is θ̄. First, it is easy to see that it is indeed a best response

to choose 0 when a link is supposed to be severed/not formed given that the other

agent is also choosing 0. Secondly, note that given the same formation history, the

Bayes’ update by any agent under s and s′ is the same. As a result, whenever the

prescribed action in s′ is 1, it is again a best response due to the assumptions that

s is an equilibrium and that f(θi) ≥ f(θ′i) for all i. Therefore s′ is an equilibrium

when the type vector is θ̄′, and the formation process will converge in exactly the

same way. This completes the proof.

7 Conclusion

In this paper, we have studied the problem of dynamic network formation by fore-

sighted, heterogeneous agents under complete and incomplete information. A large

and growing literature has examined the network formation process from various

aspects, but the impact of agents’ foresight, hetorogeneity and incomplete infor-

mation which make the model truly realistic have not been studied. Existing works

point to a limited set of strongly efficient network topologies with homogeneous

agents, and the inability to sustain strongly efficient networks in equilibrium. We

question these results based on two grounds. On one hand, the assumption of agent

homogeneity is hard to justify in most real-life applications. On the other hand,

according to our characterization of strongly efficient networks with heterogeneous

agents and observations in data collected from existing large networks, networks

formed in practical scenarios appear to be consistent to our predictions. Therefore,

we establish a dynamic network formation model to analyze the network formation

process and explain our findings.

In our model, agents meet randomly over time and voluntarily form or sever

links with each other. Link formation requires bilateral consent but severance

is unilateral. An agent’s payoff in a single period is determined by the network

topology, her position in the network, and the individual characteristics, also re-

ferred to as types, of all agents she connects to (including herself). The agents are

foresighted in the sense that their final payoff is a discounted sum of payoffs from
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each period. In every period, the agents observe the set of their direct neighbors

(the agents they link to) and a public signal which is an indicator of the formation

history.

We establish a Network Convergence Theorem under both complete and in-

complete information on the type vector, which characterizes the set of sustain-

able networks in equilibrium for patient agents. Under each environment, we show

that a network can be sustained in equilibrium as long as it provides each agent

a positive payoff. As a corollary, a strongly efficient network is sustainable when

every agent’s payoff is positive, which presents a great contrast to the existing

literature. We argue that incomplete information is an important potential source

of inefficiency, which is corroborated by evaluating the lower bound on agents’

patience to sustain strongly efficient networks. Finally, we use the connections

model to fully characterize the set of strongly efficient networks, whose topologies

bear striking resemblance to networks observed in data. This finding again con-

firms our theoretical prediction that strongly efficient networks can be sustained

in equilibrium.

We believe that many more problems regarding dynamic network formation

with foresightedness can be analyzed with the framework developed in this paper.

Questions that can be studied in future work include: (1) how different stochastic

meeting processes affect the level of patience needed for sustaining efficient net-

works; (2) whether the signal device can be generalized to transmit information

only locally; (3) in a connections model, how the spatial discount factor affects

the set of sustainable networks and the stability of efficient networks for arbitrary

time discounts.
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