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Abstract How do networks form and what is their ultimate topology? Most of the lit-
erature that addresses these questions assumes complete information: agents know in
advance the value of linking even with agents they have never met and with whom they
have had no previous interaction (direct or indirect). This paper addresses the same
questions under the much more natural assumption of incomplete information: agents
do not know in advance—but must learn—the value of linking. We show that incom-
plete information has profound implications for the formation process and the ultimate
topology. Under complete information, the network topologies that form and are stable
typically consist of agents of relatively high value only. Under incomplete information,
a much wider collection of network topologies can emerge and be stable. Moreover,
even with the same topology, the locations of agents can be very different: An agent
can achieve a central position purely as the result of chance rather than as the result of
merit. All of this can occur even in settings where agents eventually learn everything
so that information, although initially incomplete, eventually becomes complete. The
ultimate network topology depends significantly on the formation history, which is
natural and true in practice, and incomplete information makes this phenomenon more
prevalent.
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1 Introduction

How do social and economic networks form and what is their ultimate shape (topol-
ogy)? This important question is addressed in a substantial literature which begins
with Jackson and Wolinsky (1996) and continues with Bala and Goyal (2000), Jack-
son and Watts (2002), Ballester et al. (2006), and others. The central conclusion of
this literature is that only special shapes of networks can occur and persist. However,
this literature makes the strong assumption of complete information: agents know in
advance the value of linking to any other agents—even agents they have never met
and with whom they have had no previous interaction, direct or indirect. (Most of
the literature on dynamic network formation, for instance Bala and Goyal (2000) and
Watts (2001), also assumes that agents have complete information about the entire
history of link formation at every moment in time.) The present paper addresses the
same questions under what seems to us to be the much more natural assumption of
incomplete information: agents do not know in advance—but must learn—the values
of linking to agents they have never met.! As is usual in environments of incomplete
information, agents begin only with beliefs about the values of linking to other agents,
make choices on the basis of their beliefs, and update their beliefs (learn the true
values) on the basis of their experience (history).

We show that the assumption of incomplete information has profound implications
for the process of network formation, the shape of the networks that ultimately form
and persist, and the location of various agents within the network. Much of the liter-
ature that assumes complete information shows that the only networks that can form
and persist have a star or core-periphery form, with agents of relatively high value in
the core. By contrast, when information is incomplete, we show that a much larger
variety of networks and network shapes can form and persist: frequently a strict super-
set of the set of networks that can form and persist when information is complete.
This phenomenon occurs because, due to incomplete information, some unattractive
(“low-value™) agent may get linked and even secure a high connectivity degree in
an early stage of the formation process and then would remain connected thereafter
since it offers other agents indirect access to numerous “high-value” agents. Under
complete information, this “connection by mistake” never happens. However, these
connections by mistake which happen only in the incomplete information setting may
be often socially valuable: the ultimate network that forms and persists when infor-
mation is initially incomplete may often yield higher social welfare than any network
that can form and persist when information is initially complete. We stress that all of

I'we emphasize that we study learning during the network formation process, rather than learning in an
exogenously given and fixed network structure. For a study on the latter, see for example Acemoglu et al.
(2011).
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this can occur even in settings where agents eventually learn everything so that infor-
mation, although initially incomplete, eventually becomes complete. Incompleteness
of information may eventually disappear but its influence may persist forever.

To make these points, we adopt precisely the same framework as in Watts (2001)
except that we assume that information is initially incomplete. As usual, agents begin
with common prior beliefs about the types of other agents but learn these types over
time by forming links (which might later be broken) in a process where they are
randomly selected to take action. Moreover, even when the network shapes that form
are the same or similar as in the complete information case, the locations of agents
within the network can be very different. For instance, when information is incomplete,
itis possible for a star network with a “low-value” agent in the center to form and persist
indefinitely; thus, an agent can achieve a central position purely as the result of chance
rather than as the result of merit. Perhaps even more strikingly, when information
is incomplete, a connected network can form and persist even if, when information
were complete, no links would ever form so that the final form would be a totally
disconnected network.

However, the most important consequence of incomplete information is not that
a larger variety of network shapes (topologies) might emerge, but that the particular
shape that does emerge depends on the history of link formation and of link formation
opportunities. For instance, when information is incomplete, agents i, j might choose
to form a link because each expects the value of the link to exceed the cost of forming
it. Having formed the link, the agents may learn that their expectations were wrong
and so might wish to sever it. Nevertheless, before the agents have the opportunity to
sever the link, each of them may have formed other links, so that the indirect value
of the link between i and j—the value of the connection to other agents—may be
sufficiently large that they prefer to maintain the link between them after all; as a
result, even when all information is eventually revealed, the link persists.> However,
whether these other links have formed will depend not only on the values of those
links but also on the random opportunities presented to form them.

2 Literature review

The conclusions about network formation and stability that can be found in the existing
literature depend both on the process of formation and the notion of stability. Our paper
is most closely related to Watts (2001), which is an extension of Jackson and Wolinsky
(1996). The focus of Watts (2001) is to analyze the formation of networks in a dynamic
framework, where agents are homogeneous (hence information is complete in the
strongest form), link formation is undirected and requires bilateral consent, and the
pair of agents selected to update their potential link follows a given stochastic process.
This model predicts that the network topology that ultimately form and become stable
must be either empty or connected. We adopt exactly the same network formation game

2 Indirect linking provides a positive externality when information is complete as well, but the effect is
completely different: i, j know exactly the value of the (potential) link between them, so they will never
form a link which either may regret forming.
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and the same notion of pairwise stability (as in Jackson and Wolinsky 1996 as well),
but we assume instead that agents are of different types and thus connecting to them
results in different (heterogeneous) payoffs; moreover, there is incomplete information:
An agent does not know the types of agents that he has never connected with, but
he is able to form beliefs based on which he chooses the optimal action. Networks
which result under this, more realistic, assumption are strikingly different from those
obtained in the model assuming homogeneous agents and complete information. On
one hand, connectedness is no longer a key property of stable non-empty networks—
the formation process converges to connected networks in some range of parameters
and to non-empty networks with singleton agents in other ranges. On the other hand,
even if the network stays empty forever under complete information, a non-empty,
even connected network may emerge and be stable with positive probability under
incomplete information.

Jackson and Watts (2002) study the same dynamic network formation process and
applies the same notion of stable network as above, but their focus is to characterize
the set of stable networks when there is a tremble in link formation, i.e., there is a
small probability that a link is automatically deleted or added after the agents take
their action. In contrast, our paper emphasizes the strategic interaction among agents
along the network formation process, and focuses on how agents’ belief affects their
optimal behavior and thus the network topology.

The renowned paper by Bala and Goyal (2000) is close to our paper in motiva-
tion, as they also analyze the dynamics in network formation under the assumption
of homogeneous agents. However, their model is based on directed link formation,
such that the action of one individual to link to another neither requires the second
individual’s consent nor incurs any cost to the second individual. In other words, new
links can be formed unilaterally. Moreover, instead of allowing only one pair of agents
to meet and interact in one period as in Watts (2001), they assume that all agents move
simultaneously in each period and play some Nash equilibrium. Such differences in
modeling lead to fundamentally different theoretical results and applications.

In the literature, studying how agent heterogeneity affects network formation, such
as Haller and Sarangi (2003), Galeotti (2006), Galeotti et al. (2006), Galeotti and
Goyal (2010) and Zhang and van der Schaar (2012, 2013), even though the theoret-
ical frameworks vary from one to another, complete information is still a common
assumption, and the predictions in the above papers are often restricted to a few, spe-
cific, types of network topologies such as stars, wheels or core-periphery networks
with “high-value” or low-cost agents enjoying higher connectivity than others. We
differ from these works in three aspects. First, as mentioned above, agents have no
precise knowledge about their exact payoffs due to incomplete information; instead,
they choose an optimal action according to their beliefs about the payoffs that they will
obtain from connecting to others. Secondly, we show that the interaction of incom-
plete information and agent heterogeneity produces a much wider range of network
topologies, which includes stars, wheels, core-periphery networks, etc. Finally, the
topology that emerges and becomes stable strongly depends on the formation history:
An agent may exhibit a high degree of connectivity in equilibrium not necessarily
because he is of a special (high) type but also because initially he was fortunate to
obtain sufficiently many links by chance, which in turn attracted others to form and
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maintain links with him due to the large indirect benefits that he can offer. Therefore,
unlike most existing literature that only emphasizes what topologies can be formed,
we argue that how a certain topology comes into being is equally important.

Among the empirical literature on network formation games, works such as Falk
and Kosfeld (2003), Corbae and Duffy (2008), Goeree et al. (2009) and Rong and
Houser (2012) have conducted experimental studies on the types of emerging topolo-
gies. The experimental results indicate that (1) typical equilibrium network topologies
predicted by the existing theoretical analysis are not always consistent with the empir-
ical observations; especially, stars are formed only in a fraction of the total number of
experiments conducted (see Corbae and Duffy 2008; Rong and Houser 2012) and such
fractions, under some treatments such as a two-way flow of payoffs, are rather low
(see Falk and Kosfeld 2003); (2) even in the experiments where equilibrium network
topologies do emerge with high frequency, such topologies are developed rather than
born (see Goeree et al. 2009), which we believe suggests a dynamic network formation
process of a sufficiently long duration as a more appropriate environment for stable
networks to emerge, compared with a static one. Moreover, the study of networks
which actually get formed in large social communities, as presented for instance by
Mele (2010) and Leung (2013), shows that in environments where agents are heteroge-
neous and withhold certain private information in their payoffs from links, numerous
phenomena which are not predicted by the existing theoretical literature (such as mul-
tiple components and clustering of agents with different attributes) can happen. We
do not claim to explain all these phenomena in this paper since the way to model net-
work formation and stability makes a big difference to the conclusions and not every
model is appropriate in every circumstance. However, we believe that incorporating
incomplete information in the dynamic network formation game represents a first
and important step toward understanding why several previously seemingly irregular
network topologies can emerge and remain stable in practice.

The rest of the paper is organized as follows. Section 3 introduces the model.
Section 4 analyzes the model in detail and interprets the results. Section 5 discusses
an alternative approach in modeling. Section 6 concludes and introduces relevant
future research topics.

3 Model
3.1 Networks with incomplete information
3.1.1 Networks and the agents’ types

Let I ={1,2,..., N} denote a group of N agents. Agents are characterized by their
private type k € X, where X is a finite set of types.’ The probability distribution of
types on X is H. In the actual network, there are N agents—1, 2, ..., N, whose types
are drawn independently from X according to distribution H. Each agent i knows its
private type k; € X. Let k = {k; }lNz | denote the type vector of the agents.

3A general measure space of types could be accommodated easily but with added technical complications.
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A network is denoted by g C {ij : i, j € I,i # j}, and the sub-network of g on
I' C I, denoted g, (I'), is defined as a subset of g such that ij € g, (') if and
only if i, j € I’ and ij € g.ij is called a link between agents i and j. We assume
throughout that links are undirected, in the sense that we do not specify whether link
ij points from i to j or vice versa. A network g is empty if g = &.

We say that agents i and j are connected, denoted i & J,ifthereexist ji, j2, ..., jn
for some n such thatijy, jij2, ..., jaj € 8. Letd;; denote the distance, or the smallest
number of links between i and j. If i and j are not connected, define d;; := co. An
agent i in a network is a singleton if ij ¢ g for any j #i.

Let N(g) = {i|3j s.t. ij € g}. A component of network g is a maximally connected
sub-network, i.e., a set C C g such that foralli € N(C) and j € N(C),i # j, we

have i & j,and forany i € N(C) and j € N(g),ij € g implies that ij € C.
Let C; denote the component that contains link ij for some j # i. Unless otherwise
specified, in the remaining parts of the paper we use the word “component” to refer
to any non-empty component.

A network g is said to be empty if g = &, and connected if g has only one component
which is itself. g is minimal if for any component C C g and any link ij € C, the
absence of ij would disconnect at least one pair of formerly connected agents. g is
minimally connected if it is minimal and connected.

3.1.2 Payoff structure

We assume non-local externalities in payoffs: once agents i and j form a link, i not
only obtains payoffs from his immediate neighbor j, but also from the agents that he
is indirectly connected to via that particular link. The payoff to forming a direct link
is type-dependent and given by the function f : X — R™™; f(k) is the direct payoff
to any agent who forms a link to an agent of type k. Agents also obtain utilities from
indirect links (discounted by distance) and pay costs for maintaining links. Specifically,
an agent i’s payoff in the network g in a given period is given by

witk—i, @) =ui(ky, Ci):= > 8%~ flkj)— D" ¢

Ci JjijeCi

Jj<i
f(kj) > 0 denotes the payoff to an agent i from the link to an agent j, whose value
depends on j’s type k.5 € (0, 1) denotes a common decay factor, such that the payoff
of i from j with a distance of d;; is 8%/~ f (k;).c > O s the cost of maintaining a link,
which is assumed to be bilateral and homogeneous across agents. The assumption of ¢
being homogeneous across agents is without loss of generality and is made merely to
avoid redundant analysis, as the incomplete information and heterogeneity in agents’
payoffs have been reflected by the potentially different types of agents. All of our major
results can be obtained with slight technical changes in an environment where the cost
is heterogeneous (even when the cost is also private information) across agents.

LetE[f(x)] = f x f(x)dH (x) denote the expected benefit from a link to a single

agent, under the prior type distribution. As mentioned before, the only assumption we
require on X (and functions H and f) is that this expected payoft is well defined.
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3.2 Dynamic network formation game

The dynamic game is the same as in Watts (2001), except that information is incom-
plete. Time is discrete and the horizon is infinite: t = 0, 1, 2, .. .. The game is played
as follows: agents start with an empty network & in period 0. In each following period,
a pair of agents (7, j) is randomly selected to update the link between them. As long
as each pair of agents is selected with positive probability, the specific probability
distribution for the selection process does not affect our main results.

The two agents then play a simultaneous move game, where either agent can choose
to sever the link between them if there is one, and if there is not, whether to agree to
form a link with the other agent. Let a;; = 1 denote the action that i agrees to form a
link with j (if there is no existing link) or not to sever the link (if there is an existing
one), and a;; = 0 otherwise. A link is formed or maintained after bilateral consent
(i.e. ajj = aj; = 1). The agents are assumed to be myopic and not forward looking,
i.e., they only care about their current payoffs when choosing an action.

With incomplete information, agents maximize their expected payoffs, rather than
actual payoffs, when deciding the optimal action. Therefore, the belief of an agent on
the types of the other agents plays a crucial role in shaping his behavioral patterns.
We assume the following simple updating rule for the agents:

— 1. If two agents were ever connected, they know each other’s type.
— 2. Otherwise, their belief on each other’s type remains at the prior.

The first part of this updating rule is a simple representation of the realistic situation
that people will (sooner or later) find out the true value they receive via connection,
and this specification does not affect any technical part of analysis or the implication
that follows. The second part of the updating rule can be regarded as a straightforward
way of modeling agents’ constrained interpretation of the past formation history. In a
lot of realistic situations, agents can only observe a very small part or even none of
the past formation history due to many different constraints; this is especially true in
social networks and business networks where a large number of agents’ actions are
kept private. In addition, agents may not be able to perform complicated and precise
update based on their observations. As a result, when agent i meets j, 7 may have
some idea about how well j is connected to others, but due to the above constraints,
high connectivity alone does not imply high quality/value, and vice versa. In fact, our
analysis shows exactly this point, i.e., alow-quality agent can assume a central position
in the network just by chance. As a result, when agents do not know a lot about past
history and neither can infer a lot about someone else’s value from her connectivity,
the prior seems a justifiable belief to hold. A similar assumption appears in McBride
(2006), which is referred to as imperfect monitoring and describes agents’ inability
to update according to all other agents’ strategies in a static network formation game.
In the next section, we will highlight the role of this updating rule in the network
formation process.

A plausible alternative updating rule is to enable agents to perform complete
Bayesian update according to the entire formation history, which results in very com-
plicated belief formation. We will discuss this alternative updating rule in Sect. 5. Of
course, many other assumptions can be made about how agents update their beliefs.
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The two types of updating rules we consider in this paper are two extreme assump-
tions about observations and beliefs which readily illustrate the general difference that
incomplete information makes in the network formation process.

4 Analysis

In this section, we analyze the nature of the network formation process and show a clear
contrast between the existing results under complete information and our results under
incomplete information. We begin by defining the solution concept for the two-player
game in each period, and the notion of a stable network.

4.1 Stable equilibrium and stable network
4.1.1 Strategy

In this section, we formally define a strategy in the network formation game. We first
provide a standard and conventional definition and then introduce a way of simplifi-
cation for the subsequent analysis.

First, we define a strategy in a standard way. Let (i;, j;) denote the pair of agents
selected in period 7, and let g; denote the network formed in period 7. In the network
formation process, the following two conditions must be satisfied:

g =4
8oyl €18 T icy1jorl, 8 —leqljort)-

The first condition refers to the initially empty network; the second reflects the fact
that i 41 jr+1 is the only link that can be potentially changed in period t + 1. Denote
or = {(i¢, jr), 8¢ }’r:1 as the formation history up to period ¢, and let £, denote the set
of all possible formation histories up to period ¢, with the initial condition ¥y = &.
Let ¥ = U°,%;, a(pure) strategy of agent i is then a mapping s; : X x ¥ x (I —i) —
{0, 1}, where X is the set of possible types and I — i is the set of agents other than
i. For agent i, given the strategy profile of other agents s_;, a best response is then a
strategy s; such that given any k; € X, 0 € ¥ and j € I — i, s; selects an action that
maximizes i’s (current) expected payoff according to her belief.

The complete set of strategies for an agent is enormous: A different action can
be chosen based on each different history, and in infinite periods of time, there will
be infinitely many possible histories. However, we argue below that it is sufficient
to consider a particular subset of strategies, and these strategies admit a particularly
simple description.

First, note that the current-period payoff of an agent does not depend on her own
type. In any period, given any strategy profile of other agents, if some action is strictly
optimal for agent i of type k;, then it must also be strictly optimal for agent i of
any other type (except in non-generic cases where an agent is indifferent between the
two available actions, any best response—any candidate for equilibrium—must be
independent of an agent’s own type).
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Agents are assumed to be myopic; they choose an action to maximize current
expected payoff according to belief. Now for agent i, a weakly best response for i is
always choose 1, if her expected payoff according to her belief is nonnegative and 0,
otherwise. We assume agents link when indifferent. (Again, except for non-generic
cases where i is indifferent between her two available actions, this is in fact the strict
best response.) Here, the sufficient information for i to determine her optimal action is
her belief on the type vector, and the component structure of the other agent selected.

Hence, we do not need to consider all strategies, only those that are ever best
responses (optimal) and these admit a simple alternative description as mappings
from beliefs and component structures to actions. Such strategies are straightforward
to characterize. Formally, let B; : ¥ — A(X") be the belief updating function of
agent i, with the constraint that B; always assigns probability 1 on i’s true type and
B; (@) is equal to the prior belief, and let C; : ¥ — G (G being the set of all possible
networks) be the mapping from the formation history to the resulting component
containing j. Then, let Y; = {(B;(0;), C(0;)) : 0; € X}. We can describe a strategy
of agent i as a mapping s; : X x ¥; x (I —i) — {0, 1}.* With this characterization,
we can break down the solution of equilibria with sequential rationality to the much
more straightforward inspection of equilibria in the 2-person link formation game in
each period.

4.1.2 Stable equilibrium

Now we define our solution concept, which we refer to as the stable equilibrium (SE).
With a slight abuse of notation, in the subsequent analysis, we use B; to denote the
realized belief vector of agent i based on her belief updating function, and C; to denote
the component containing i.

Definition 1 A strategy profile s is a stable equilibrium (SE) if for any agent j #
i,si(ki, (B;,Cj), j) = lif and only if

Elu;(k—;, (C; UCj) +ij)|Bi]l = ui(k—;, C;).

We would like to emphasize here that even though the definition of SE does not
involve an explicit expression of best response, it essentially represents bilateral best
response in the one-period linking game. Note that the above strategy profile does not
depend on the agents’ types, i.e., for agent j, given Bj, she takes the same action no
matter what her type is. Hence for agent i, her payoff from a link with agent j only
depends on her belief vector B; and the component C;. In other words, i’s expected
payoffis E[u; (k—;, (C;UC;)+ij)|B;]if alinkis formed, and u; (k—;, C;) otherwise. A
weakly best response for i is then to choose action 1 if E[u; (k—;, (C;UC;)+ij)|B;] >
u;i(k—;, C;) and O otherwise, which is exactly as prescribed by the above strategy.
Hence, the above strategy maximizes i’s current expected payoff given s;, and vice
versa.

4 As mentioned before, in generic cases, agent i’s best response will not depend on her own type. Nev-
ertheless, we still keep the type of i as an argument in i’s strategy since it is part of i’s knowledge after
all.
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In words, a SE is a Nash equilibrium where any agent would choose to agree to
form a link (if there is no existing link) or choose not to sever the link (if there is an
existing link) as long as the expected payoff from the link is nonnegative according
to her current belief. It is stable because the prescribed strategy is robust to small
probabilistic changes in the counter party’s strategy when the above inequality is strict.
More specifically, if some agent j other than i changes her action with a sufficiently
small probability €, i’s best response would not change. In particular, it excludes the
“pessimistic” or null equilibria in which no link formation occurs even though each
agent has a nonnegative expected payoff from the potential link. In other words, agents
choose to link as long as they are at least indifferent. This equilibrium notion is similar
to pairwise stability in Jackson and Wolinsky (1996), but for the setting of incomplete
information; thus, the conditions that characterize “stability” are based on expected
rather than realized payoffs.

The following lemma shows the existence and uniqueness of such an equilibrium.

Lemma 1 SE exists and is unique.

Proof Consider any period. Assume that agents i and j are selected in that period.
Given the belief vectors B; and B, and the components C; and C;, i’s (similarly, j’s)
strategy satisfying the condition in the definition of a SE can be expressed as

o n oo iy | LB (ki (CUC)) +ij)|Bi] = ui(k—i, Ci)

Sl (kl’ (Bl ’ Cj)a .]) - I O, OtherWise

Since the terms on both sides of the above inequality are well defined and agent i’s
action is binary, agent i ’s optimal choice in this period is unique. Since the period and
agents assumed are arbitrary, SE is unique. (Given that agents link when indifferent,
the argument is that agents follow a dominant strategy.) O

Lemma 1 together with the above robustness property of a SE ensures that the out-
come of the formation process is unique and robust to small perturbation (or tremble)
in agents’ action. It is also useful to note that Lemma 1 holds for any belief updating
function.

4.1.3 Stable network

From now on, we assume that agents play the SE in every period. Let y; :=
{(i, j,)}’r:1 (t > 1) denote a selection path up to time ¢, or the set of selected pairs of
agents, ordered from 1 to ¢. Since the equilibrium in each period exists and is unique,
the realization of the entire network formation process can be fully characterized by «,
the type vector of agents and y, the realization of the random selection process. We
use I to denote a formation process, and in particular denote I'c and I'j¢ as network
formation processes under complete and incomplete information correspondingly.
Let gc () denote the unique network formed after period ¢, following a selection
path of y;, under complete information, and g;c (yy) the network under incomplete

information. Let B¢ (y;) = {Bi,c(%)},N: | denote the associated belief vector after
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period ¢ under complete information (where B; c(y;) is always equal to the degen-
erate belief on the true type vector k, for every i), and B;c(y;) the belief vector
under incomplete information. By Lemma 1 we know that both gc (y,)(grc(y:)) and
Bc(yy)(Brc(yr)) are well defined. We say that:

— 1. A network gcan emerge under complete information (incomplete information)
if there exists a selection path y; for some ¢, such that g = gc (1) (= g1¢c(¥1))-

— 2. A network with the associated belief vector, (g, B)(B = {Bi},N= 1) is a stable
network under complete information (incomplete information) if no link is formed
or broken given any subsequent selection path in I'c (I'7¢). If B refers to the belief
vector under complete information (where B; is the degenerate belief on the true
type vector for all i), then we just say that g is a stable network.

— 3. I'c(I'jc) can converge to g if there exists a selection path y; for some 7, such
that g = gc () (= grc (1)) and (gc (1), Be (7)) (@1¢ (1), Bre (1)) s stable.

4.2 Information revelation

Before discussing the differences between the network topologies that can emerge and
be stable under complete information and incomplete information, we first inspect
how long incomplete information can persist. We say that information is complete
(following a given history) when every agent’s belief (following that history) is the
degenerate belief on the true type vector «, i.e., Prob(x|B;) = 1 for any i, and that
information is incomplete otherwise.

Recall that agents update their beliefs based on the simple updating rule: if two
agents have ever been connected, they know each other’s type; otherwise, their beliefs
on each other’s type remain at the prior. In other words, for agent 7, the following is true
for any realized belief B;: the argument in B; for the type of any other agent j is the
degenerate belief on j’s true type k; if 7 and j have ever been connected, and is equal to
the prior belief otherwise. Hence, from the definition of SE, we know thatif E[ f(x)] <
¢, no link will ever form from the very beginning, and if E[ f (x)] > ¢, then every agent
is willing to form a link with any other agent that she has not been connected to before.
This observation enables us to determine the property of information revelation in the
network formation process, which is noted in the following proposition.

Proposition 1 For any k:

— LL.IfE[f(x)] < ¢, information never becomes complete: agents’ beliefs remain
forever at the prior.

- 2. IfE[f(x)] = ¢, information becomes complete within finitely many periods
almost surely, and information is complete in any stable network.

Proof If E[f(x)] < c: by inspecting the SE we know that for any pair of agents
selected, no link would be formed in any period. Therefore, no agent ever learns the
type of any other agent, and the beliefs would stay at the prior.

If E[f(x)] > c: we first show that information becomes complete within finitely
many periods almost surely. It suffices to show that any two agents are connected for
at least one period within finitely many periods almost surely. Since E[ f (x)] > ¢, by
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the definition of SE it further suffices to show that any two agents are selected at least
once within finitely many periods almost surely. Consider any two agents i and j; the
probability of the event that they are not selected in one period is 1 — m <1,
and thus the probability of this event occurring for infinitely many periods is O.
Next, we show that information must be complete in any stable network. If g
is connected, then clearly there is complete information. If g is unconnected and
information is not complete, then there must exist two unconnected agents such that
their beliefs on each other’s type remain at the prior. When they are selected they
would form a link, which implies that (g, B) is not stable, a contradiction. O

When the expected benefit from a link under the prior weakly exceeds the link
formation cost, everyone has the incentive to form links with others whose types are
unknown, and thus eventually learns the true type vector with probability 1 over time.
Indeed, as agents are always willing to form links with strangers, after sufficiently
many periods the probability of pairs of agents who never connected (i.e., pairs of
agents that have never met and hence have never learnt about each other) would be
arbitrarily small. In other words, only in an early stage of the formation process can
incomplete information make a difference and affect the ultimate network topology,
as compared to complete information.

4.3 Contrast between complete and incomplete information

Even though Proposition 1 may leave the impression that incomplete information is
not crucial for the formation process as it only takes effect in the short run, we will
emphasize in the following analysis that such short-term influence is actually persistent
over time.

Let G¢ (k) denote the set of networks that can emerge under complete information
given «, and Gc («) that under incomplete information. Similarly, let G (k) denote
the set of networks that can emerge and be stable under complete information given
K, and G7 ¢ («) that under incomplete information.

Theorem 1 For any «:

- LIFE[f(x)] <c, then Gic(k) = G} (k) = {T}.
- 2. IfE[f(x)] = ¢, then G c (k) D Gc(k), and Gy (k) D G§ (k).

Proof If E[ f(x)] < c: as in the proof of Proposition 1, no link would ever form and
thus the only network that can emerge is the empty network. This proves 1.

To prove 2, assume E[ f(x)] > ¢ and consider g € G¢ (k).

If g is empty: since g € G ¢ (k), there must exist two agents i, j such that f(k;) < ¢
or f(kj) < c. Consider the selection path y, = ((i, j), (i, j)) under incomplete
information. It is clear that a link would form between i and j in period 1, but the link
would then be severed in period 2, and thus g = g(y»), which implies thatg € Gc(x).

If g is non-empty,: consider any selection path ylc such that g emerges for the first
time in period . By the definition of G ¢ (k), we know that such ytc exists. We construct
a different selection path under which g forms when information is incomplete (but
the true type vector is k). Let yTI € be a selection path constructed from ytc such that
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the pairs of agents in y,c between whom there is no existing link, but a new link is
not formed either, are deleted. Note that the two selection paths may take different
number of time periods: T < ¢ by the above construction.

Consider the formation process under incomplete information given y,/¢. First, it
is clear that for any agent i with f(k;) < c, no link will be formed between i and
any other agent under complete information. Hence, if a link is formed between i
and j under complete information, it must be the case that f(k;) and f(k;) are both
weakly higher than c; then according to the simple updating rule, the same link will
also be formed under incomplete information regardless of whether i and j know each
other’s type. Also, it is clear that the decision of severing a link by any agent is the
same under complete information and incomplete information, since such a decision
is based on the realized payoff. Therefore, the formation process yields the same
link formation and severance results under complete information given th and under
incomplete information given /€. Hence, given y/C, g emerges for the first time in
period 7 under incomplete information, which implies that g € Gc (k). Therefore
Gc (k) C Gyc(x). This proves the first part of 2.

To prove the second part of 2 (stability), we first observe that by the above argument,
we already know that any network that can emerge under complete information can also
emerge under incomplete information. Thus, it suffices to show that, for any network
g € G (k), there exists a subsequent selection path under incomplete information after
g’s first appearance that would make g stable. We prove the result by construction.

If g is empty: consider the selection path ynw-1) such that every pair of agents is
2

selected exactly twice consecutively. Since by assumption g € G.(k), we know that
for every pair of agents a link would first form and then be severed in the next period.
In period w + 1, information is complete and the empty network becomes stable.

If g is non-empty: denoting the number of components and singleton agents in g
as g (g), under incomplete information let the subsequent selection path after g’s first
appearance be such that in the first g (g)(g(g) — 1) periods, two agents from different
components are selected exactly twice consecutively and every two components (or
singleton agents) are involved. By assumption g € G.(k), which means that, should
two agents from different components know each other’s type, no link would be formed
between them. Therefore, under incomplete information, when a pair of agents from
different components is selected for the second time, either there is no existing link
between them and no link would be formed, or an existing link would be severed. In
either case, the agents know each other’s type as well as the types of agents in the
counter party’s component. Therefore, after g (g) (¢ (g) — 1) periods, every agent knows
k and essentially there is no incomplete information. Again by the assumption that
g € G (k), we can conclude that g is such that no link would be formed or severed
in any later period given any selection path. Thus g € G7(k), which completes the
proof. O

Theorem 1 states that when expected benefits are sufficiently high, if some network
can emerge (and be stable) under complete information, then it can also emerge (and
be stable) under incomplete information, but the reverse may not be true. Intuitively, if
a link could be formed under complete information, then given high expected benefits
and the simple updating rule, it can also be formed under incomplete information,
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Fig. 1 Not connected under complete info. versus connected under incomplete info. a Complete informa-
tion, b incomplete information

whether or not the relevant agents know each other’s type. Note that the reverse is not
necessarily true: even if a link could be formed under incomplete information, it may
not form under complete information because the expected payoffs are sufficiently
higher than the realized payoffs, i.e., in the incomplete information setting, were
the agents to know each other’s type beforehand, the link may never be formed. In
other words, under incomplete information, high expected payoffs can initialize link
formation such that even though agents would “regret” the links they formed after
knowing each other’s type. However, if more links have formed before they are selected
again to update their initial links, then due to increasing returns to link formation the
positive externalities would in turn ensure that the initial links are maintained. The
following example illustrates this point.

Example 1 Assume the following: N = 5, X = {a, b}, and the other parameters
are such that f(b) < ¢ < f(a),E[f(x)] = ¢, (1 +8 — 8> —8)f(b) > ¢, and
(1—8%) f(a) < c.Inaddition, we assume that the realized type distribution is consistent
with the agents’ prior belief, i.e., the actual number of type a agents = N x Prob(k; =
a). For illustrative purpose, we consider the case thatk; = ko = b, k3 = kg = ks = a,
and Prob(k; = a) = 0.6.

Consider the following selection path: ((1, 2), (2, 3), (3,4), (4,5), (1,5)). Under
complete information, the network is never connected, as in Fig. 1a. Under incomplete
information, the SE can be explicitly computed in each period. For example, in period
1, agent 1’s expected payoff from the link with agent 2 is E[ f(x)] > ¢ and vice versa,
and thus, the link is formed. The formation process is shown in Fig. 1b.

According to the assumptions on parameters, one can then easily show that the
network formed in period 5 is stable. Note that agent 1 prefers to maintain the link to
agent 2 even though agent 2 is of a low type because that shortens agent 1’s path to
agent 3.

Of course, though the agents’ beliefs are always consistent with each other and with
the prior distribution of types, they may not be always consistent with the realized type
vector; when they are not, the difference between complete and incomplete information
is even larger. For instance, assume that k; = b for all i and consider the same selection
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path as above. Under complete information, the network stays empty; under incomplete
information, the formation process still converges to a wheel network (Fig. 2).

An important factor that enables networks that are never formed under complete
information to form and be stable under incomplete information is that agents do not
sever undesirable links immediately. In the model, this is an event that happens with
significantly high probability, since the probability that the same pair of agents is
selected twice consecutively is rather low. It becomes even lower in a larger society. In
numerous works on network formation, such as Jackson and Wolinsky (1996), Watts
(2001) and Dutta et al. (2005), the random selection of a potential link to update is a
common modeling assumption. In practical situations, this event can be understood as
follows: It takes time for people to make up their minds to disconnect with someone
they do not like. Before deciding to sever a link with a person, that person may have built
new connection with others, which will change the value of linking with her after all.
The reason for such delay in decision may be some legal, geographic or technological
barrier. For instance, if a link represents a binary contract, one cannot easily terminate
the contractual relationship before the expiration date. Alternatively, it might be the
case that knowing the true value of linking with others is a time-consuming process. It
usually takes a certain amount of communication and interaction before people/entities
really know the value of their connection, especially in social networks.

Another feature of incomplete information is the history dependence of the forma-
tion process, in the sense that the ultimate network topology depends greatly on the
selection path. As a result, even if a type is more valuable or preferable than another,
under incomplete information it is not necessary that an agent of that type ends up
with a higher connectivity degree. Consider the following example: assume the same
parameter values as in Example 1, and consider a group of agents consisting of four
type a agents and five type b agents. There exists a selection path such that: under com-
plete information, the formation process converges to a star network with only type a
agents (Fig. 3a); under incomplete information, the formation process converges to a
“hub-and-spokes” network (Fig. 3b).>

5 One such selection path is ((1, 2), (1, 3),(2,6), (3,7),(6,7), (1,5),(5,9), (6,9), (1,4), 4,8), (7, 8),
8,9),(8,9),(2,5), (3,5), 4,5)).
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Fig. 3 Different connectivity degree distributions. a Complete information, b incomplete information

Under complete information, the center of the star network has to be a type a agent
since no type b agent ever gets linked with anyone else. In fact, regardless of the
selection path, no type b agent can ever get linked. By contrast, under incomplete
information, it first becomes possible for two type b agents to form a link, and then,
as it turns out in this particular topology, each type b agent’s distance with the type
a agent is sufficiently small. Even though the type a agent has a low connectivity
degree, the other agents do not find a new link with the type a agent attractive, because
it does not offer sufficient indirect benefits. Hence, the agent with the more valuable
type—type a—ends up with the lowest connectivity degree in the network. This is
in stark contrast with the existing results in the literature (for instance the property
of “law of the few” in Galeotti and Goyal 2010), which often show that a more
valuable agent is better connected. As mentioned in the literature review, violation
of such theoretical predictions has been documented in a number of empirical and
experimental studies. From this perspective, our result can be regarded as a micro-
foundation for the prevalent phenomenon that an agent may obtain a central position
in a network by chance instead of merit.

Furthermore, the event that some agent of “low value” ends up with relatively high
connectivity under incomplete information is not a rare event. In Fig. 4, we show the
simulation result of a network formation process under incomplete information with
15 “high-type” (in the sense that (1 —3) f(x) < ¢ < f(x)) agents and one “low-type”
(in the sense that f(x) < c) agents.® The figure shows the “low-type” agent’s rank in
terms of connectivity. Under complete information, the “low-type” agent would have
never been connected; under incomplete information, even though the probability that
the “low-type” agent obtains the highest connectivity is rather low, the probability that
she ranks among the top half (at or above 8th) is more than 0.2.

6 We set the “high-type” agent’s value to be f(x) = 6 and the “low-type” agent’s value to be f(x) = 4.In
addition, we assume that ¢ = 5 and § = 0.6. In each simulation, we let the formation process run for 2,500
periods. We use 100 simulations to find the average result.
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Fig. 4 Simulations: rank of “low-type” agent

The above examples also highlight and clarifies the point made by Theorem 1:
incomplete information generates a superset of networks, not a superset of links, as
compared to complete information. In other words, new and different networks can be
formed under incomplete information, rather than a mere addition of links to networks
formed under complete information. Indeed, the network in Fig. 3a has three links and
that in Fig. 3b has 12, but they share no links in common.

Moreover, even when E[ f(x)] > ¢, incomplete information does not imply that
more links are always formed in the stable network. For instance, let X = {a, b}, and
consider a group of 8 type a agents (indexed 1, 2, ..., 8) and 1 type b agent (indexed 9).
The payoffs are f(b) < ¢, f(a) > c,(1=68)f(a) <c < (1 —8%) f(a)and E[ f (x)] >
c. Let the selection path be as follows: first, select 9 once with each of 1,2,...,8. Then,
select ((1,2), (2,3),...,(7,8), (8, 1)). Finally, select ((1,5), (2,6), (3,7), (4, 8)).
The resulting stable network is shown in Fig. 5 below: under complete information,
the network has 12 links, while under incomplete information it has only 8.

The above examples also show that, unlike the literature on network formation
with complete information, which proves that in each model only one or two types
of network topologies can be stable (see Bala and Goyal 2000; Galeotti et al. 2006;
Galeotti and Goyal 2010), under incomplete information many more types of networks
can emerge and be stable. Even when compared to models that allow for more pos-
sibilities in network types (see Jackson and Wolinsky 1996; Watts 2001), incomplete
information again brings about a wider range of stable network topologies. The next
theorem formalizes this statement, but first, we need to recall some familiar definitions
of network structures.

— 1. gis complete ifij € gVi, j such thati # j.
— 2. g is a star network if there exists i € I such thatij € gVj # i,j € I and
i'jggvi' j#i
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Fig. 5 More links under complete information. a Complete information, b incomplete information

— 3. g is a core-periphery network if there exists non-empty I’ C I, such that ij €
gVi,jel',i # j,andthatV; € I\I',ij’ € gforsomei € I'and jj' ¢ gVj #i.
Note that a star network is a special case of a core-periphery network.

— 4. gis atree network if there exists a partitionof I, Iy, ..., I, such that (1) #(I}) =
1;(2)Vn' =2,...,n, each agent in I,; has one and only one link with some agent
in I,y_1; (3) no other link exists.”

— 5. g is a wheel network if there exists a bijection w : I — [ such that g =
(7' '), 7' Q) 1@), ..., 7 ' (N = Da~ Y (N)).

Theorem 2 Assume that E[ f (x)] > c. Fix a type vector k and a network g. If g is
stable when information is complete and belongs to any one of the following categories:

— 1. Empty network;

— 2. Minimally connected network (i.e., tree network, including star network);
— 3. Fully connected network;

— 4. Core-periphery network;

— 5. Wheel network.

then g can emerge and be stable when information is incomplete, i.e. g € G (k).

Note that we have assumed only that g is stable when information is complete, not
that it can emerge when information is complete.

Proof For 1, see the proof of Theorem 1. For 2—4, since g is connected and by assump-
tion g is stable under complete information, it suffices to show that when g belongs
to any of the categories there exists a selection path such that g can emerge in the
formation process. We discuss case by case and prove them by construction below.
2: Let L be the total number of links in g. Let the selection path be such that the
pair of agents for each link in g is selected once and only once in the first L periods.

7 Essentially, a tree network is equivalent to a minimally connected network, and a star network is a special
case of a tree network.
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Since E[ f(x)] > ¢, we know that each link will be formed, and thus g emerges in
period L.

3: Since g is fully connected and stable, we know that for any two agents i and
Jj» (1 = &8) f (ki) > c. Therefore regardless of the selection path g would emerge.

4: Let the selection path be such that: first each periphery agent is selected once and
only once with their corresponding core agent, then every two core agents are selected
once and only once before any other pair of agents is selected. Since E[ f(x)] > ¢ and
g is stable under complete information, we know that each link will be formed, and
thus g emerges after the last pair of core agents is selected.

5: Let the selection path be such that the pair of agents for each link in g is selected
once and only once in the first N — 1 periods. Since E[ f (x)] > ¢ and g is stable under
complete information, we know that each link will be formed, and thus g emerges in
period N — 1. O

Theorem 2 explicitly characterizes types of connected networks that can emerge
and be stable under incomplete information, and most typical networks in both the
literature and empirical studies are included. However, note that there may be some
stable networks that cannot emerge under complete or incomplete information—for
example, a network g with a subset of links g’ such that (1) within g’, the benefit from
any one link cannot cover the maintenance cost without the existence of the other links
and (2) g\ g’ is still connected. Such network topologies may never be formed since
only one pair of agents is selected in each period and the agents are myopic.

4.4 Characterizing topological differences

In the previous analysis, we have seen that even with the same selection path, very
different networks can emerge and be stable under incomplete information; in this
section, we formalize a way of describing such topological differences and characterize
the corresponding conditions under which these differences are achieved.

To obtain a clear characterization result on the topological differences, we first
categorize the agents based on their types. We say that i is a low-value agent if
f(ki) < c,i.e., alink with this agent is not worthwhile anyway; a medium-value
agent if (1 — 38) f (ki) < ¢ < f(k;), i.e., a link with this agent would be beneficial
if there exists no indirect path, and a high-value agent if (1 — §) f(k;) > ¢, i.e., a
link would still be beneficial even if there already exists an indirect path with two
links (the shortest indirect path). Let n;, n,, and nj, denote the number of agents in the
corresponding category.

We will consider selection paths for which the formation process converges under
both complete and incomplete information. The following lemma establishes that such
paths exist.

Lemma 2 For every k, there exists a formation path such that the formation process
leads to a stable network under both complete and incomplete information.

Proof Consider the following selection path:

— 1. Fix a high-value or medium-value agent i*. In the first N — 1 periods, select i *
and every other agent exactly once.
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— 2. In the following N — 1 periods, select i* and every other agent exactly once
again.

— 3. In the following w periods, select every pair of high-value agents.

— 4. In the following n;(n; — 1) periods, select every pair of low-value agents twice
consecutively.

If n,,, +np > 1:under complete information: after step 2, a star with i* as the center
and all other high-value or medium-value agents as the periphery would be formed.
After step 3, there will be a link between every pair of high-value agents. The network
formed after step 3 is stable. Under incomplete information: after step 1, a star with i *
as the center and all other agents as the periphery would be formed. After step 2, every
link between i * and a low-type agent will be severed, and a star with i* as the center
and all other high-value or medium-value agents as the periphery would be formed.
After step 3, there will be a link between every pair of high-value agents. In step 4,
no link will be formed since information has been complete after step 1. Hence, the
network formed after step 3 is stable.

If n,, + np = 0: under complete information, it is clear that no link ever forms.
Under incomplete information, during step 4 a link would be formed and then severed
between every pair of low-value agents, after which information would be complete.
Therefore, under both complete and incomplete information, the empty network after
step 4 is stable. O

We say that two networks are identical if they are both empty or have the same
links, and entirely different if at least one of them is non-empty and they share no link
in common. To say that two formation processes can converge to identical networks
(or entirely different networks), we mean that there exists a selection path for both
formation processes such that identical (or entirely different) networks emerge and be
stable.

The following proposition states the topological differences in terms of the resulting
stable network topology, between a formation process under complete information /¢
and one under incomplete information I7j¢.

Proposition 2 For every k, the following properties hold:

— LIfE[f(x)] < ¢, then I'c and I'1c converge to identical networks with probability
1ifny, +ny <1, and they converge to entirely different networks with probability
1lifny, +np > 1.

- 2. IfE[f(x)] > ¢, then I'c and I'1c converge to identical networks with positive
probability for any values of other parameters, and:

—a. Ifnp, = 2 o0rn; =0, then I'c and I'jc never converge to entirely different
networks.

— b.Ifny <2andn; > 0, then I'c and I'jc converge to entirely different networks
with positive probability if (1) n,, +ny, is sufficiently large, or (2) ny, +np > 2,8
is sufficiently close to 1 and n; is sufficiently large.

Proof 1: We already know from Theorem 1 that if E[ f(x)] < c, the network stays
empty under incomplete information for any « and ye. If n,,, + nj, < 1, clearly the
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network stays empty under complete information for any « and ), otherwise at least
one pair of high-value or medium-value agents will be linked with probability 1.

2: The claim that I'c and ;¢ converge to identical networks with positive proba-
bility is a direct result from Theorem 1.

If n, > 2, in any stable network under complete and incomplete information,
any pair of high-value agents must be linked. Thus I'c and ;¢ never converge to
entirely different networks. If n; = 0, then the formation processes under complete
and incomplete information would be the same, so again I'c and I';¢ never converge
to entirely different networks.

If nj, < 2 and n; > 0, first consider the following selection path when n,, + n;, >

€ —MaX; js Jow-value f(ki) .
o + 1:

— 1. Fix an agent j* € arg max; is jow-value f (ki). In the first n,,, + n;, periods, select
J* and every medium-value or high-value agent.

— 2. In the following n; — 1 periods, select j* and every other low-value agent twice
consecutively.

— 3. In the remaining periods, let the selection path be the same as in the proof of
Lemma 2.

Under complete information, as in the proof of Lemma 2, the formation process
would converge to a network only consisting of links between medium-value or high-
value agents. Under incomplete information, after step 1, a star with j* as the center
and all the medium-value or high-value agents as the periphery would be formed.
In step 2, a link would be formed and then severed between j* and every other
low-value agent. After that, information becomes complete and no low-value agent
except j* would ever be linked. For every medium-value or high-value agent, since
Ny + np > O ‘g“:;v"‘l”ef %) 4 1, the benefit from the link with j* is at least
max; is low-value Jf (ki) + 8, +ny — 1)c > ¢, which implies that the agent has incen-
tive to maintain the link. In addition, as n, < 2, no link would be formed between any
pair of medium-value or high-value agents, and thus the network is stable. This last
fact also shows that there are no common links between the networks converged to
under complete and incomplete information, and thus I'c and I';¢ converge to entirely
different networks.

Secondly, consider the following selection path when n,,, +nj > 2, § is sufficiently
closeto 1 and n; > n,, +n, — 1:

— 1. In the first period, select a low-value agent and a medium-value or high-value
agent; in the second period, select a second medium-value or high-value agent and
the previous low-value agent; in the third period, select a second low-value agent

and the previous medium-value or high-value agent; ...; in the 2(n,, 4+ n;, — 1)th
period, select the last medium-value or high-value agent and the previous low-value
agent.

— 2.In the following n; — (n,, +nj; — 1) periods, select a medium-value or high-value
agent and every remaining low-value agent.

— 3. In the remaining periods, let the selection path be the same as in the proof of
Lemma 2.

Under complete information, as in the proof of Lemma 2, the formation process would
converge to a network only consisting of links between medium-value or high-value
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agents. Under incomplete information, after step 1, a line network only consisting of
links between a low-value agent and a medium-value or high-value agent is formed.
After step 2, information becomes complete, and as § is sufficiently close to 1, the net-
work is stable (note that § being sufficiently close to 1 is consistent with the condition
ny < 2). Therefore there are no common links between the networks converged to
under complete and incomplete information, and thus I'c and I';¢ converge to entirely
different networks. O

Case 2(b) in the above proposition is of particular interest, because apart from
establishing the property that I'¢ and I';¢ may converge to entirely different networks,
it also provides insight on the particular types of network topologies that can result
in such a difference. For instance, when n,, + ny is sufficiently large, a star network
with a low-value agent can emerge and be stable under incomplete information, which
immediately implies that there are no common links with any stable network under
complete information.

The above implication points to various applications. One particular case of this
scenario occuring is when the selection process exhibits “preferential attachment,”
i.e., agents with higher connectivity degree are more likely to be selected, as in several
well-documented networks such as that of movie actors and the world wide web
(see Barabasi and Albert 1999). In this case, when a low-value agent gets “lucky”
and obtains a high connectivity degree initially, it is more and more likely over time
that agents with higher quality would link to this low-value agent, instead of linking
between themselves.

On the other hand, when n; is sufficiently large, a line network (i.e., a tree network
with only one agent in each subset in the partition of /) under incomplete information,
where low-value agents and medium-value or high-value agents are linked alternately,
will ensure that I'c and I'j¢ converge to entirely different networks. Similar scenar-
ios, for example tree networks with only a few but lengthy branches, are more likely
to emerge in relatively sparse and sometimes anonymous communities where agents
only have the opportunity to make a limited number of links with unknown others, for
example technical and biological networks (see Fricke et al. 2013). In other words,
disassortativity—in this case, the tendency for agents to have small and similar con-
nectivity degrees—is another source of significant differences between complete and
incomplete information.

The above two types of phenomena both result from the interaction of incomplete
information, characteristics of the selection process, and agents’ myopia.

Figures 6 and 7 provide simulation results on expected (or average) difference,
both in its absolute value and as a fraction of the total number of links, between net-
works under complete and incomplete information.® We define difference between

8 In the simulation, we assume that the payoffs from a high-value, medium-value and low-value agent
are 15, 10 and 4 respectively. We assume that ¢ = 5 and § = 0.6. The probabilities for an agent to be
of high-value, medium-value and low-value are (1/3, 1/3, 1/3) for uniform distribution, (4/7,2/7, 1/7)
for high-type environment, (1/7,2/7, 4/7) for low-type environment and (1/7, 4/7, 2/7) for medium-type
environment. In each simulation, we let the formation process run for 2,500 periods. We use 100 simulations
to find the average difference.
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Fig. 6 Simulations: expected difference

two networks as the number of non-common links in the networks. More precisely,
the difference between networks g; and g» is given by (g1 \ &) U (g \ g1)l,
and the total number of links is given by |g; U g>|. The results indicate that
there is a significant difference between networks that emerge and are stable under
complete and incomplete information; this difference tends to be larger when the
total number of agents N increases, and when there are more low-value agents in
the group.

Figure 8 provides simulation results on the number of stable networks® under com-
plete and incomplete information. By comparing the difference between the curves
in each graph, we can see clear monotonicity: The more likely an agent’s type is
low and the less likely an agent’s type is high, the more likely the formation process
converges to different networks under complete and incomplete information. This is
because low-type agents do not connect under complete information and they may
under incomplete information, and high-type agents link to each other under both
scenarios.

9 We use the network that forms at the end of the simulation as a proxy for a stable network. In counting
the number of networks, we keep the agents anonymous, i.e., they only differ by their types, so that the
result reflects the number of distinct network topologies rather than the number of permutations.
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Fig. 8 Simulations: number of stable networks
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4.5 Social welfare

An alternative and very important way of comparing complete and incomplete infor-
mation is to evaluate the upper bound in social welfare in the two cases. Formally, let
We (k) and Wy (k) be the maximum social welfare that can be achieved by a network
in G- (k) and G (k) respectively. By Theorem 1, it is clear that under incomplete
information, if E[ f(x)] > ¢, then more networks are possible and hence, the welfare
upper bound under incomplete information is weakly higher than that under complete
information; the following results provide sharper information.

Lemma 3 Under both complete and incomplete information, if some stable network
g1 is a proper superset of some other stable network @>, then every agent’s payoff is
weakly higher in g than in g>. As a result, g1 yields a weakly higher social welfare
than g;.

Proof Note that the social welfare is the sum of each agent’s payoff. For agents having
the same links in g; and g, it is clear that they are weakly better off in g;.
Now consider an agent i whose links in g; is a proper superset of those in g;. Let

ij1,...,1jmdenotei’slinksing; butnotingy. Suppose thatu; (k—_;, g1) < u;(k—;, g2).

It implies that there must be a permutation of i ji, . . ., ij,, denoted i jl’ ) j,/n, such

that for some m" € {1,...,m}, u;(k—;, g —ijj —---—ij ) > ui(k—;, g — ijj —
..

o — l]m/il)'

Denote L; as an arbitrary proper subset of i’s links (including the empty set),
and observe that for any g and any of i’s link ij, u;(k—;, g — ij) — u;(k—;i, g >
wik—i. g\ Li — ij) — u;(k_i, g \ L;). Therefore, u; (k_;, g — ij!,) — u; (k_i, g1) >
ui(k—i, g1 —iji—---—ij, ) —ui(k—;, g —iji—---—ij ) > 0, whichimplies that
in gy, severing ij; , would strictly increase i’s payoff. But this is a contradiction with
the assumption of stability, and thus it must be the case that u; (k—;, g1) > u; (k—;, g).
Therefore, we can conclude that g; yields a weakly higher social welfare than g,. O

This lemma determines the social welfare relation between two stable networks
when one contains the other. The following partial characterization can then be shown.

Proposition 3 For any «, the following properties hold:

- LIFE[f(x)] < ¢, then Wce(k) = Wic(k) = 0ifny, +np < 1, and We (k) >
Wic (k) = 0 otherwise.
- 2. IfE[f(x)] = ¢, then W¢ (k) < Wic(k), and:
— a. Ifn; =0, then We (k) = Wic(k).
- b . Ifn; > 0and ny,, + np, = 1, then We (k) < Wice (i) if there exists a stable
wheel network among a subset of the agents.
—c Ifn; > 0andny +np > 1, then We (k) < Wie(x) if 8 is sufficiently close
to 1.

Proof 1: We already know from Theorem 1 that if E[ f(x)] < c, the network stays
empty under incomplete information, yielding W;c (k) = 0. Therefore, W¢ (k) >
Wic (k) if and only if there is some non-empty network in Gz (), which is equivalent
to the condition n,, + nj > 1.
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2: The claim that W¢ (k) < W (k) is a direct result from Theorem 1.

If n; =0, G (k) and G7 (k) are identical, and thus W (k) = Wyc (k).

If n; > 0 and n,, + n, = 1, under complete information the network stays empty,
yielding a social welfare of 0. By Lemma 3, we know that in the stable wheel network,
every agent’s payoff is at least 0. In addition, since n,, + n, = 1 the assumption that
such a network is stable implies that the total number of agents is at least 5, and that the
medium-value or high-value agent must be non-singleton in this network. Thus, the
two low-value agents who link with the medium-value or high-value agent must have a
strictly positive payoff, which means that the social welfare is strictly positive. Finally,
it is easy to see that this network cannot be formed under complete information. Thus
We k) < Wrel(x).

If n; > 0 and n, + n, > 1, consider the network g € G (k) which yields the
highest social welfare [this network must exist, since there are only finitely many
networks in G- («)]. Let & be sufficiently close to 1 such that g is minimal. Thus, there
exist medium-value or high-value agents i and j (in fact, when § is very close to 1,
there is no high-value agent) such that #j is the only link i has in g. Note that since g
is minimal, g is also stable for any larger §.

Consider a selection path under complete information in which g emerges, such
that no link is formed or severed after ij is formed, and no low-value agent is selected
before ij is formed. Under incomplete information, consider the following variation
of this selection path: before the period in which ij is formed, insert two periods: in
the first period, select some low-value agent i” and i; in the second period, select i’
and ;. Since E[ f(x)] > ¢, we know that ii" and i’ j would both be formed. As § gets
sufficiently close to 1, the payoffs of the medium-value or high-value agents would
strictly increase due to the connection to i’. Therefore, W (k) < Wic (k). O

Just as in Proposition 2, this result points to particular network topologies [2(b) and
2(c)] that result in a clear welfare comparison. In the presence of low-value agents,
when there is only one medium-value or high-value agent, the empty network is the
only stable network that can emerge under complete information; under incomplete
information, for any other network to be stable, the network must exhibit a “wheel-
like” feature, i.e., apart from the medium-value or high-value agent, every agent must
have at least two links. Once such a network is stable, it can be immediately shown
that it yields a strictly positive social welfare. When there are more than one medium-
value or high-value agents, as § gets sufficiently close to 1 the network that yields
the highest social welfare must be minimal; then under incomplete information, there
always exists a way to “insert” a low-value agent between two medium-value or high-
value agents, which brings almost no change to the payoffs of the medium-value or
high-value agents (since § is close to 1) but generates a strictly positive payoff for the
low-value agent. Therefore social welfare is strictly improved.

Figure 9 generated from simulation shows the expected (or average) social welfare
achieved under complete and incomplete information, in various environments. The
interpretation of this figure is two-fold. On one hand, the numerical value of the
difference in social welfare is mostly an artifact of the particular simulations, since it
is rather sensitive to how much the values of different types of agents differ from the
cost, as well as how large the discount factor § is. On the other hand, the significant

@ Springer



Dynamic network formation with incomplete information

327

Uniform Distribution f(a) = 15, f(b) = 10, f(c) =4, c =5,5=0.6
3000

Incomplete Incomplete
» 2500 - — — Complete 2 3500 — — Complete
8 & 3000 1
o g
% 2000 % 2500 |
= ©
‘g 1500 é 2000 1
(%]
3 3 1500 E
£ 1000 3
s £ 1000 1
>
w500 w 500 |

U = 1 1 1 U 2l 1 1 1
10 15 20 25 5 10 15 pitl 25

Low Type Environment f(a) = 15, f(b) = 10, f(c) =4, c =5,5=0.6

1400

N(number of Users)

High Type Environment f(a) = 15, f(b) = 10, f(c) =4,c =5,5=0.6
4000

N(number of Users)

Medium Type Environment f(a) = 15, f(b) = 10, f(c) =4, c=5,5=0.6

2500

1200 Incomplete Incomplete
g Complete g 2000 Complete ]
< 1000 <
= = 1500 g
= 800 =
o (%]
@ @
- 600 = 1000 1
2 2
@ 400 2
it @i 500 ]
200
0 N n L ole= L L N
5 10 15 20 25 5 10 15 20 25

N(number of Users) N(number of Users)

Fig. 9 Simulations: expected social welfare

“difference in difference” in terms of social welfare across various environments is a
general and robust phenomenon. In an environment with more low-type agents, the
difference in social welfare between complete and incomplete information is larger
than than in an environment with less low-type agents.

5 Bayesian learning

The results we have derived so far are based on the simple updating rule, which
assumes that every agent’s posterior belief on another agent’s type is binary: either it
is the degenerated belief on the true type, or the prior. Note again that such an updating
rule implicitly assumes that agents can only observe their own formation history. If
the agents adopt a different updating rule, which reflects either more or less available
information, the formation process can exhibit a much different pattern. We discuss
one such alternative in detail, which we call Bayesian learning by formation history.

We assume that agents can observe the entire formation history, i.e. the pair of agents
selected and the resulting network structure each period, in addition to knowing the
types of agents connected to themselves. However, if a link is severed, they do not
observe the identity of the agent that severs the link. They then apply Bayesian updating
in forming posterior beliefs. In the literature, for instance Jackson and Wolinsky (1996),
Bala and Goyal (2000) and Watts (2001), since there is no uncertainty on payofts and
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agents are myopic, it does not matter whether the entire formation history is observed.
However, with incomplete information, what agents can observe and how they update
information accordingly are crucial for shaping the ultimate network topology. The
following result highlights the key difference between the simple learning rule and
this alternative.

Theorem 3 Under Bayesian learning by formation history, assume that in the prior
type distribution, the probability of an agent being low-value is positive. Then, when
there are sufficiently many low-value agents, there is always a positive probability that
the formation process converges to an empty network, and that information remains
incomplete forever.

Proof We prove the result by construction. Consider any agent i, and consider the
selection path y; that i is selected twice consecutively with a low-value agent, then
selected twice consecutively with another low-value agent, and so on. We know that
initially a link forms and then breaks each time i is selected with a different low-value
agent. Let p;, be the posterior probability that / is a medium-value or high-value
agent after the link between i and the mth low-value agent breaks. We know that by
P (1=p)

=7 with the initial condition that pj is equal to
mrQ

the prior probability that an agent is medium-value or high-value. By assumption, we
know that p6 < 1. Therefore % = % < 17—”/‘,)2 < 1, and thus there exists a

m 'mPo 1-pq
sufficiently large n; such that, following the above described selection path y;, for any
agent j* who has not been selected with i before, E[ f (k;)|B (y:)] < c.

After y;, when i is selected with any other agent j, no link can ever form: if j has
not been selected with i before, j is not willing to form a link with i since j believes
i to be low-value with a high probability; if j has been selected with i before, i is not
willing to form a link with j since i already knows that j is low-value. This process
can be replicated for every agent i; as a result, no link will be formed between any
two agents, and the formation process converges to an empty network. Finally, since
not every pair of agents has been connected before the formation process converges,

information remains incomplete forever. O

Bayesian updating, p;, ., =

A major implication here is that Bayesian learning by formation history makes it
possible for the posterior probability of an agent being of high type to fall close to 0.
As a result, even if making a link with some agent i is incentivized with the simple
learning rule, it may no longer be the case under Bayesian learning by formation
history, given some particular selection path that would drag posterior beliefs toward
i being low value. The following example illustrates this difference.

Example 2 Assume the following: N =5, X = {a, b}, k; =bVi =1,...,5, and the
other parameters are such that f(b) < ¢, E[f(x)] > ¢, (1+5§— 82 —83) f(b) > c.Let
p = h(a), and assume that pl(l_—;f)f(a) + %;g_p)zf(b) < c¢. Consider the fol-
lowing selection path in period 1-9: ((1, 3), (1, 3), (2,4), (2,4), (1,2), (3,4), 4,5),
(2,3),(1,5)).

Under the simple learning rule, the formation process is shown in Fig. 10a. The
network formed in period 9 is stable; under Bayesian learning by formation history,
the formation process is shown in Fig. 10b. The network formed in period 4 is stable.
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Fig.10 Connected under simple updating rule versus empty under Bayesian learning by formation history.
a Simple learning rule, b Bayesian learning by formation history

Here with the simple learning rule, agents hold the prior belief each time they are
selected with another agent with an unknown type, and thus the given selection path
induces a connected network at last. Yet with Bayesian learning by formation history,
each agent updates from their observation to conclude that others are low value with
a sufficiently large probability, and thus are unwilling to make any link.

One implication of the above theorem and example is that more learning can some-
times be “bad,” i.e., it may lead to inefficient outcomes. Despite the specific differences
brought about by an alternative updating rule, our general results still hold under a
range of parameters. It can be shown that if any typical network as depicted in Theorem
2 can emerge and be stable under complete information, then it can under incomplete
information and Bayesian learning by formation history as well. The topological differ-
ences characterized by Proposition 2 also hold except 2(a)—now it becomes possible
that I'c and I'7¢ converge to entirely different networks even when nj, > 2. Finally,
the welfare comparison shown in Proposition 3 stays the same under this updating
rule.

6 Conclusion and future research

In this paper, we analyzed the network formation process under agent heterogeneity
and incomplete information. Our results are in stark contrast with the existing litera-
ture: instead of restricting the equilibrium network topologies to fall into one or two
specific categories, our model generates a great variety of network types. Besides what
networks can emerge as a result of convergence, we argue that it is also important to
understand iow a network gets formed, since we want to know, for instance, why some
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agents become central and others do not. While link formation and belief formation
are usually treated as two independent processes to be studied separately, we combine
them in our model and show that belief formation is in fact a key factor that could
facilitate or deter link formation. Even if incomplete information vanishes in the long
run, its impact on shaping the network topology is persistent.

Several future research topics can be built up on the basis of our model. One of
these challenges is to pin down the structure of an efficient network and implement
it in a game-theoretic setting. The usual definition on efficiency in networks adopted
in the literature is strong efficiency, i.e., a network is strongly efficient if it maximizes
the sum of agents’ payoffs. In general, we know that a strongly efficient network
must exist (though not necessarily be unique) because the set of possible network
structures is finite. However, since payoffs are heterogeneous across agents according
to the type vector, the exact topology of an efficient network becomes difficult to
characterize; moreover, the efficient network may not be unique because in an agent-
heterogeneous environment there could be multiple ways of generating the same level
of social welfare.

Most importantly, we have assumed throughout, as does most of the literature, that
agents are myopic rather than forward looking. If it is assumed otherwise that agents
are foresighted and are concerned about both their current and future welfare, then the
aim of analysis essentially becomes solving an agent’s dynamic optimization problem
in the presence of other similarly foresighted agents. One can then easily anticipate a
very different evolution pattern of network topologies as well as very different stable
network topologies in the limit, for now link formation does not only serve as an action
of maximizing the current expected payoff, but also as a way of acquiring information
for potential future benefit.
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