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Sharing in Networks of Strategic Agents

Jie Xu, Yangbo Song, and Mihaela van der Schaar, Fellow, [EEE

Abstract—In social, economic and engineering networks, con-
nected agents need to cooperate by repeatedly sharing information
and/or goods. Typically, sharing is costly and there are no imme-
diate benefits for agents who share. Hence, agents who strategically
aim to maximize their own individual utilities will “free-ride” be-
cause they lack incentives to cooperate/share, thereby leading to in-
efficient operation or even collapse of networks. To incentivize the
strategic agents to cooperate with each other, we design distributed
rating protocols which exploit the ongoing nature of the agents’
interactions to assign ratings and through them, determine future
rewards and punishments: agents that have behaved as directed
enjoy high ratings—and hence greater future access to the infor-
mation/goods of others; agents that have not behaved as directed
enjoy low ratings—and hence less future access to the informa-
tion/goods of others. Unlike existing rating protocols, the proposed
protocol operates in a distributed manner and takes into consid-
eration the underlying interconnectivity of agents as well as their
heterogeneity. We prove that in many networks, the price of an-
archy (PoA) obtained by adopting the proposed rating protocols is
1, that is, the optimal social welfare is attained. In networks where
PoA is larger than 1, we show that the proposed rating protocol sig-
nificantly outperforms existing incentive mechanisms. Last but not
least, the proposed rating protocols can also operate efficiently in
dynamic networks, where new agents enter the network over time.

Index Terms—Cooperative networks, distributed protocols,
economics networks, imperfect monitoring, incentive design,
indirect reciprocity, ratings, repeated games, social networks,
social reciprocation.

I. INTRODUCTION

N recent years, extensive research effort has been devoted

to studying cooperative networks where autonomous agents
interact repeatedly with each other over an exogenously given
network by sharing information (such as measurements, esti-
mates, beliefs, or opinions) or goods (such as endowments or
production). These networks require various levels of coordi-
nated behavior and cooperation among the autonomous agents.
However, in many scenarios, participating in the cooperative
process entails costs to the agents, such as the cost of producing,
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processing and transferring information/goods to their neigh-
bors. If agents are strategic, they will choose to cooperate with
other agents in the network only if cooperation maximizes their
own long-term utilities, which take into account both current
and future benefits. Absent incentives for cooperation, agents
will free-ride and the networks will work inefficiently or even
collapse [2]. If a central authority existed in the network, which
was omniscient about agents’ utilities and actions as well as ca-
pable of computing and enforcing an efficient behavior profile
for all the agents, the social optimum could be attained; but,
in practice, such central authorities do not exist. On the con-
trary, agents usually possess only local information, and they
act selfishly to maximize their own payoff. Hence, incentives
are needed to compel the strategic agents to act in a socially
optimal manner. Designing incentives for networks of strategic
agents is significantly more challenging than in scenarios where
agents are randomly matched [10], [19]-[21] or interact as in-
dependent pairs [7], [8], since the incentives of agents are com-
plexly coupled based on the connectivity of agents. Moreover,
effective implementation of an incentive scheme requires that it
be distributed, which represents another key challenge. In this
paper we present the first scheme that solves these problems.

To better motivate this work, we provide two concrete appli-
cation scenarios. Establishing a secure cyber environment re-
quires investments on security technologies (e.g. firewalls, ac-
cess control etc.) from autonomous systems (ASes). Improved
security can be achieved if ASes deploy proactive protection
technologies (e.g. outbound traffic control) which are more ef-
fective because ASes have better control over their own devices
and traffic originating from their own users [29]. However, ASes
are self-interested and are reluctant to make security investment
on these proactive technologies since doing that is not directly
beneficial to themselves [29]. The similar incentive problem
also exists in joint spectrum sensing problems in cognitive radio
systems [9]. To enable dynamic spectrum access, the prelimi-
nary requirement is the ability to accurately identify the pres-
ence of primary users over a wide range of spectrum. With joint
spectrum sensing, each secondary user senses the spectrum in-
dividually and then shares the raw sensing results to their neigh-
bors at the beginning of each transmission slot to improve the
detection probability in this slot. However, secondary users are
self-interested and lack the incentives to send their sensing raw
results to their neighbors which will cost extra resources such
as energy and transmission time.

We resolve the above incentive problem by deploying a dis-
tributed rating protocol. The rating protocol consists of three
components: a set of ratings, recommended strategies (for each
agent) and rating update rules (for each agent). In each period,
each agent is assigned a rating, which is maintained and updated
according to the rating protocol. The actions recommended to
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the agents by the system (e.g. how much to share) depend on the
ratings of their neighboring agents (i.e. the agents with whom
they are directly connected). The recommendations can be de-
termined in a distributed manner by the system. For example,
each agent could be interacting with other agents through a soft-
ware client (similar to BitTorrent). Each agent’s software is then
preprogrammed to recommend actions based on the local net-
work structure it observes, information that is received from the
software of neighboring agents and the current ratings of neigh-
boring agents. Since agents are strategic and want to maximize
their own utility, they have the freedom to decide their own ac-
tions and they may comply or not with the recommended ac-
tions. Based on the agent’s current rating and whether it has fol-
lowed/deviated from the recommended strategy, the software
increases/decreases an agent’s rating. We design rating proto-
cols (i.e. recommended strategies and rating update rules) that
are incentive-compatible (i.e. agents have incentives to follow
the recommended strategies) and maximize the social welfare
(i.e. the sum of the utility of all agents).
There are two central challenges. The first arises from the fact
that agents interact over a network. In particular, the agents’ in-
teractions are subject to network constraints, i.e. agents can only
interact with their neighbors. This is in stark contrast with ex-
isting works in repeated games relying on social reciprocation
which assume that the agents are randomly matched [10], [19],
[20] or interact on a complete graph [9]. Due to the network con-
straints, agents’ incentives are coupled in a much more complex
manner since they depend directly on the behavior of their im-
mediate neighbors and indirectly on the behavior of more distant
remaining agents. Because of the different network constraints,
there is not a universal rating protocol that can work efficiently
in all networks. Instead, the rating protocol design must explic-
itly take into account the specific coupling among agents arising
from the specific network.
The second arises because we insist on protocols that are
distributed and informationally decentralized. We do not need
to assume the existence of any central entity that can monitor
the entire network (i.e. network topology, all agents’ utility
functions and actions) and communicate to all individual
agents about all other agents’ behavior. Decentralization rules
out protocols proposed in prior works [19],[20] since they are
designed and implemented in a centralized manner, requiring
the knowledge of the entire network at a central entity. In this
paper, the rating protocol is designed and implemented in a
distributed manner, requiring only limited message exchange
(i.e. Lagrangian multipliers during configuration and agents’
ratings during interaction) among the software of neighboring
agents.
The main contributions of this paper are:
1) We develop a framework for providing incentives in net-
works where heterogeneous agents interact repeatedly over
a network. This framework is very general and can be em-
ployed for a variety of applications, including in networks
where bilateral interest may not exist between agents and
hence, existing works based on direct reciprocation such
as Tit-for-Tat [7], [8] do not work.

2) We rigorously analyze the incentives (Theorem 1) of
agents operating under the rating protocol framework

using a novel repeated game with imperfect monitoring
formalism, which explicitly considers the network struc-
ture, agents’ utility functions etc. With these constraints
and using the dual decomposition method, we propose
a novel and fully distributed algorithm to compute the
optimal recommended strategy of the rating protocol that
maximizes the social welfare.

3) We show how different networks may affect agents’ incen-
tives in different ways and how to design rating protocols
that are tailored to different networks. Modified rating pro-
tocols that apply to various dynamic networks are also pro-
posed and analyzed.

The remaining part of this paper is organized as follows. In
Section II, we review related works and existing solutions, and
highlight the key differences to this work. Section III outlines
the system model and formulates the protocol design problem.
In Section IV, we design the optimal rating protocol to maxi-
mize the social welfare. The performance of the optimal design
is then analyzed in Section V. Section VI studies the rating pro-
tocol design in a class of dynamic networks. Section VII pro-
vides numerical results to highlight the features of the proposed
protocol. Finally, we conclude this paper in Section VIII.

II. RELATED WORKS

Cooperation among the agents (e.g. repeated sharing) is crit-
ical for the enhanced performance and robustness of various
types of social, economic and engineering networks [1]. The
main focus of this literature is on determining the resulting net-
work performance if agents repeatedly share and process in-
formation/goods. However, absent incentives and in the pres-
ence of strategic agents, these networks will work inefficiently
or even collapse [2]. Thus, the main focus of the current paper
is how to incentivize strategic agents to cooperate such that net-
works can operate efficiently.

A variety of incentive schemes has been proposed to en-
courage cooperation among agents (see e.g. [4] for a review
of different game theoretic solutions). Two popular incen-
tive schemes are pricing and differential service. Pricing
schemes [5], [6] use payments to reward and punish individ-
uals for their behavior. However, they often require complex
accounting and monitoring infrastructure, which introduces
substantial communication and computation overhead. Differ-
ential service schemes, on the other hand, reward and punish
individuals by providing differential services depending on
their behavior. Differential services can be provided by the
network operator [10], [16], [19]. However, in many networks
of autonomous agents, such a centralized network operator
does not exist. Alternatively, differential services can also be
provided by the other agents participating in the network since
agents in the considered applications derive their utility from
their interactions with other agents [7]-[12], [19]-[21]. Such
incentive schemes are based on the principle of reciprocity and
can be classified into direct (personal) reciprocation and social
reciprocation. In direct (personal) reciprocation schemes (e.g.
the widely adopted Tit-for-Tat strategy [7], [8]), the behavior
of an individual agent toward another is based on its personal
experience with that agent. However, they only work when
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TABLE I

COMPARISON WITH EXISTING WORKS

Social Learning Direct Reciprocation | Social Reciprocation This paper
[1] [718] [10][19][20]
Information/goods Costless Costly Costly Costly
exchange
Asymmetric interests No No Yes Yes
Convergence of . . .
Objective of study agents’ beliefs and Incentives for agents | Incentives for agents to | Incentives for agents to
. to cooperate cooperate cooperate
actions
One-shot game/
Game type Bayesian game Repeated game Repeated game Repeated game
Robust to monitoring No Yes & No Yes & No Yes
errors
Equilibrium concept Bayesian equilibrium Subgame perfect Publl.c' pqrfect Perf.e(.:t lf)cal
equilibrium equilibrium equilibrium
. . Fully connected/ .
Network topology Arbitrary Arbitrary Random matching Arbitrary
Agents actions Belief update Cooperation level Cooperation level Cooperation level
P . . Own actions and Own actions and Own actions and
Agents’ utility depends on Self belief/action others actions others actions others (joint) actions
s . Homogeneous &
Utility function Heterogeneous Homogeneous Homogenous Heterogeneous
Distributed design Yes Yes No Yes

two interacting agents have bilateral interests. In social recip-
rocation schemes [9]-[12], [19]-[21], individual agents obtain
some (public) information about other individuals (e.g. their
ratings) and decide their behavior toward other agents based on
this information.

Incentive mechanisms based on social reciprocation are
often studied using the familiar framework of repeated games.
In [9], the sharing game is studied in a narrower context of
cooperative spectrum sensing and various simple strategies are
investigated. Agents are assumed to be able to communicate
and share sensing results with all other agents, effectively
forming a complete graph where the agents’ knowledge of
the network is complete and symmetric. However, such an
assumption rarely holds in distributed networks where, instead,
agents may interact over arbitrary topologies and have incom-
plete and asymmetric knowledge of the entire network. In such
scenarios, simple strategies proposed in [9] will fail to work and
the incentives design becomes significantly more challenging.

Contagion strategies on networks [10]-[12] are proposed as
a simple method to provide incentives for agents to cooperate.
However, such methods do not perform well if monitoring is
imperfect since any single error can lead to a network collapse.
Even if certain forms of forgiveness are introduced, contagion
strategies are shown to be effective only in very specific net-
works [11], [12]. It is still extremely difficult, if not impossible,
to design efficient forgiving schemes in arbitrary distributed net-
works since agents will have difficulty in conditioning their ac-
tions on history, e.g. whether they are in the contagion phase
or the forgiving phase, due to the asymmetric and incomplete
knowledge.

Rating/reputation mechanisms are proposed as another
promising solution to implement social reciprocation. Much of
the existing work on reputation mechanism is concerned with
practical implementation details such as effective information
gathering techniques [13] or determining the impact of repu-
tation on a seller’s prices and sales [14], [15]. The few works

providing theoretical results on rating protocol design consider
either one (or a few) long-lived agent(s) interacting with many
short-lived agents [16]-[18] or anonymous, homogeneous and
unconnected agents selected to interact with each other using
random matching [10], [19], [20]. Importantly, few of the prior
works consider the design of such rating protocols for networks
where agents interact over a network, which leads to extremely
complex and coupled interactions among agents. Moreover, the
distributed nature of the considered sharing networks imposes
unique challenges for the rating protocol design and implemen-
tation which are not addressed in prior works [19], [20].

In Table I, we compare the current paper with existing works
on social learning and incentive schemes based on direct recip-
rocation and social reciprocation.

III. SYSTEM MODEL

A. Network Environment

We consider a network of N agents, indexed by
{1,2,...,N} = N. Agents are connected subject to an
underlying topology & = {gi;}, ;o With gi; = g0 = 1
(here we consider undirected connection) representing agent 4
and 7 being connected (e.g. there is a communication channel
between them) and g;; = g;; = 0 otherwise. Moreover, we
set g;; = (. We say that agent ¢ and agent 7 are neighbors if
they are connected. For now we assume a static network G but
dynamic networks are also allowed in our framework and this
will be discussed in detail in Section VI.

Time is infinite and divided into discrete periods. In each time
period, each agent i decides its action (e.g. information/goods
sharing) towards each of its neighbors 7, denoted by a,; € R, .!
For example, a,; can represent the effort spent (e.g. informa-
tion/goods shared) by agent s when interacting with agent j. We

IMore general action space is also allowed, e.g. @;; is upper bounded.
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collect the actions of agent 7 towards all its neighbors in the nota-
tion @; = {a,,;j}j:g;j:l. Denote @ = (a1, ..., ay) as the action
profile of all agents anda_; = (@1,...,8;_1,@i11,...,6N) as
the action profile of agents except ¢. Let A; = Rii be the action
space of agent ¢ where d; = > ; 9ij is the number of agent ¢’s
neighbors. Let A = x;7A; be the action space of all agents.

Agents obtain benefits from the information/goods shared by
neighbors. We denote the actions of agent ¢’s neighbors towards
agent ¢ by @; = {(Lji}j:gﬂ-:l and let b;(a;) be the benefit that
agent 4 obtains from these actions. Spending effort (e.g. sharing
information/goods) is costly and the cost ¢;{@;) depends on an
agent :’s own actions @;. Hence, given the action profile & of all
agents, the utility of agent ¢ is

ui(a) = bi(a;) — ci(a;) (1)

We impose some constraints on the benefit and cost functions.

Assumption 1: For each i, the benefit b;(@; ) is non-decreasing
in each a;;,Vj : ¢;; = 1 and is strictly concave in @; (in other
words, jointly strictly concave in a;;, V5 : g;; = 1).

Assumption 2: For each i, the cost is linear in its sum action,
i.€. ci(a,,;) = Zj:gij A5j.

The above assumptions state that (1) agents receive de-
creasing marginal benefits of information/goods acquisition,
which captures the fact that agents become more or less “sa-
tiated” when they possess sufficient information/goods, in the
sense that additional information/goods would only generate
little additional payoff; (2) the cost incurred by an agent is equal
(or proportional) to the sum effort spent to cooperate with all its
neighbors. We note that the utility model is general enough to
account for the heterogeneity of the value of information/goods
to different users since b;(@;) is agent-specific and depends
on the action vector of all agent ¢’s neighbors. For a con-
crete example, the benefit function can be the widely-adopted
Dixit-Stiglitz utility function [26] which captures the informa-
tion/goods heterogeneity and diversity produced by different
agents, i.e.

2

bi(a:) = f | | D (wjiaz)™ )

JEN;

where wj; > 0 describes the relative importance of agent j’s
information/goods to agent ¢, v; € (0, 1) measures agent i’ ap-
preciation for information/goods diversity and f{(-) is a concave
and increasing function.

B. Rating Protocol

Each agent ¢ is associated with a rating 6;(f) € © =
{1,2,..., K} in each period ¢ which is maintained and updated
according to the rating protocol. The rating of agent ¢ is main-
tained by the software client of agent :. We collect agent i’s
neighbors” ratings in 8; = {6}, _, € ©% . The rating pro-
tocol recommends actions to an agent depending on neighbors’
ratings &; : 0% — A, We refer to this recommendation as the
recommended strategy. For agent i, a; = {Uij}j ., consists
of d; elements with o;;(f;) representing the recommended

sharing action of agent ¢ towards agent j if agent j’s rating
is 6;. We collect the strategies of agent :’s neighbors towards
agent i in 6,(6;) = {”Ji(gi)}j;gij:r These recommendations
are done in a distributed manner by the system, through the
software clients of the agents.

Depending on whether or not agent ¢ followed the recom-
mended strategy, its software client updates agent ¢’s rating at
the end of each period. Let y; € ¥ = {0, 1} be the public mon-
itoring signal of agent ¢ with y; = 1 ife; = 6; andy; = 0 if
a; # o; which is generated by the software of agent 7. However,
monitoring may not be perfect and hence it is possible that even
ifa; = o, it can still be y; = 0 (and if a; # o, y; = 1). The
rating update rule for agent ¢ is a function; : © X ¥ — A(O)
where A(©) is the probability simplex of the rating set and
(816, ;) is the probability that the updated rating is 6" if
agent ’s current rating is #; and the public signal is y;. In par-
ticular, we consider the following parameterized rating update
rule, for agent ¢,

i ey if 0 =max{1,k — 1}, =0
11—« it =k, 4, =0

7 (07301, yip) = ks i s Yi

7 (638 wir) Bik, if0 =min{K,k+1},y;=1
1 7/6’5.,](:7 lfe;i—:k’yzzl

3)

In words, compliant agents are rewarded with a higher rating
with some probability while deviating agents are punished with
a lower rating with some (other) probability. These probabili-
ties a; 1. Ok are in the range of [0,1]. Note that when cv; = 0,
the rating set of agent i effectively reduces to a subset {k, k +
1,..., K} since its rating will never drop below k (if its ini-
tial rating is higher than %). Note also that agents remain at the
highest rating # = K if they always follow the recommended
strategy regardless of the choice of 3; .

To sum up, the rating protocol is uniquely determined by the
recommended (public) strategies &;(8;), Vi, v8; and the rating
update probabilities cv; &, 3; 1 for every ¢ and k. These will be
our design parameters. We denote the rating protocol by 7 =
(©,0,a, ). The rating protocol is configured (i.e. the values
of the design parameters are determined) at the beginning of the
system by the software clients of the agents. The configuration
is carried out in a distributed way, requiring the software clients
to exchange with neighbors limited messages (i.e. Lagrangian
multipliers etc.). When the network is static, the rating protocol
is configured only once at the beginning. When the network is
dynamic, the rating protocol is reconfigured once in a while, to
adapt to the varying network. We assume that all agents are syn-
chronized and enter the reconfiguration period simultaneously.
This synchronization can be coordinated by an exogenous sto-
chastic process (not controlled by any central planner), for in-
stance a random sequence generator with the same seed for each
agent. Alternatively, the reconfiguration can also be initiated by
a particular agent and then this signal is spread over the entire
network. We also note that agents will not have incentives not to
perform reconfiguration since the protocol is designed in such
a way that participation in this period produces a higher utility
for the agent than not participating. Table II summarizes the op-
eration of the rating protocol.
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TABLE II
OPERATION OF THE RATING PROTOCOL
Agent (Strategic) Software client (Non-strategic)
Information . Own agents’ utility f}lqctlon and
. local connectivity
Configuration - - - -
Action/ N Determine the rating protocol in a
Functionality distributed manner
. The instantiated rating protocol; Whether or not the agent followed
Information . y
Interaction Neighbors’ ratings. the recommended strategy
Periods Action/ Choose sharing actions aiming to Update the agent’s rating;
Functionality maximize own utility Broadcast it in the neighborhood

721

C. Problem Formulation

The objective of the protocol designer is to maximize the so-
cial welfare of the network, which is defined as the time-average
sum utility of all agents, i.e.

N
V= lim o ; Z u; (a(t)) “4)
If agents are obedient, then the system designer can assign
socially optimal actions, denoted by a°”*(¢), V!, to agents
and then agents will simply take the actions prescribed by
the system designer. Determining the socially optimal actions
involves solving the following utility maximization problem:

maximize 14
a

subject to a;;(t) >0, Vi, j:gij =1,V 5)

This problem can be easily solved and any action profile a°*
that satisfies

62" (1) € argmaxb, (@:(0) — i @ ()p ()
is a solution. We denote the optimal social welfare by V%,

The network cooperation (e.g. information/goods sharing)
problem becomes much more difficult in the presence of
strategic agents: strategic agents may not want to take the
prescribed actions because these actions do not maximize their
own utilities.

Definition 1: A (one-shot) network sharing game is a tuple
G = (N, A {ui(-)};c s G) where NV is the set of players, A
is the action space of all players, w,(+) is the utility function of
player 4 (defined by (1)) and G is the underlying network.

Consider the utility of an agent ¢ in (1). In order to maximize
its own utility, agent » will take the action @; = 0 regardless of
other agents’ actions a_ ;. Therefore, there exists a unique Nash
equilibrium (NE) @™ = 0 in the network sharing game in any
period.

In this paper, we exploit the repeated interactions among
agents to provide agents with incentives to cooperate. In the
following, we introduce the equilibrium concept used in this
paper.

At the end of each interaction period, each agent  observes
the (imperfect) monitoring signal y; € ¥ = {0,1} of the ac-
tion of each of its neighbor j. Write }; for the space of signals
observed by agent ¢ and )V = X ;e ); for the space of signal

profiles. A profile of actions @ € A determines a distribution
of signals p1q € A()); agents observe a realization drawn at
random from this distribution. In our network setting, the signal
distribution is /ocal in the sense that agent ¢’s observed signal
depends only on the actions of 2” neighbors. Fig. 1 illustrates the
local signals observed by agents. A signal history of length 7" is
an elementy = (y*,...,y7) € YT,y is the signal profile at
time # and g is the signal profile observed by agent 7 at time .
In addition to signals, agents know their own actions and their
realized own utilities, so a private history of length T for agent
i is an element . € (A; x R x V;)T = HT and a private his-
tory of length 7" is a profile of private histories for each agent. A
strategy for agent 4 is a function a; : H; — .A;, prescribing an
action following each history. The strategy a; is a local strategy
(or a local signal strategy) if it depends only on the history of
local signals observed by : (and not on the history of i’s ac-
tions or realized utilities.) An infinite history for agent i is an
element of (A; x R x );)*° = H°. Note that a strategy pro-
file o defines, for each agent ¢, a probability distribution (; (&)
on the infinite histories H;° and hence a probability distribution
(o) on infinite utility streams R>°. Agents discount future util-
ities, so the utility agent # derives from the infinite utility stream
w; = (u}l,u?,...)is

Wilw) =) 6%l (7

t=0

where § € (0,1) is the discount factor. Hence the (expected)
utility agent 7 derives if agents follow the strategy profile o is

u;

A strategy profile ¢ is a Nash equilibrium if for each agent 2,
the strategy o; is a best response to other agents’ strategy profile
o_;; that is

Ui(oi,0_;) > Uj(6,,0_;) 9

for every strategy &;. The profile o is a local equilibrium if it
is a Nash equilibrium and every agent uses a local strategys; it
is a perfect local equilibrium (PLE) if in addition it is a Nash
equilibrium following every history.

The proposed rating protocol assigns each agent a rating that
summarizes the public signal history of the action of that agent.
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haid ! sharing action
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Fig. 1. TIllustration of local public signals.

Hence, o; : H; — A; is reduced to ; : ©% — A;. This sig-
nificantly reduces the implementation complexity since agents
need to keep only the current ratings of their neighbors instead
of the entire signal history of their neighbors. If a recommended
strategy profile constitutes a PLE, then agents have incentives to
follow their recommended strategies. Denote the achievable so-
cial welfare by adopting the rating protocol by V (). The rating
protocol design problem thus is

maximize V()
m=(0,0.a,8)
subject to o constitutes a PLE (10)

D. Illustrative Example: Cooperative Estimation

We illustrate the generality of our formalism by showing how
well-studied joint estimation problems [9], [28] can be cast into
it. Our proposed framework can also be used to solve problems
such as distributed cybersecurity investment [29] and coopera-
tion in economics networks [30] etc.

Suppose that each agent observes in each period a noisy ver-
sion of a time-varying underlying system parameter s(¢) of in-
terest. Denote the observation of agent ¢ by 0;(t). We assume
that 0;(t) = s(t) + €;(t), where the observation error ¢;(¢) is
1.i.d. Gaussian across agents and time with mean zero and vari-
ance r2. Agents can exchange observations with their neigh-
bors to obtain better estimations of the system parameter. Let
a;;(t) be the transmission power spent by agent 7. The higher
the transmission power the larger probability that agent j re-
ceives this additional observation from agent 7. Agents can use
various combination rules [9] to obtain the final estimations.
The expected mean square error (MSE) of agent ¢’s final esti-
mation will depend on the actions of its neighbors, denoted by
MSE;(a;(t)). If we define the MSE improvement as the ben-
efit of agents, i.e. b;(a;(t)) = r> — M SE(a;(t)), then the utility
of agent 7 in period £ given the received benefit and its incurred
costis u;(a(t)) = r? — MSE;(a;(t)) — ||a:(t)]];.

IV. DISTRIBUTED OPTIMAL RATING PROTOCOL DESIGN

If a rating protocol constitutes a PLE, then all agents will find
it in their self-interest to follow the recommended strategies. If
the rating update rule updates the ratings of compliant agents
upward with positive probabilities, then eventually all agents

will have the highest ratings forever (assuming no update er-
rors). Therefore, the social welfare, which is the time-average
sum utility, is asymptotically the same as the sum utility of all
agents when they have the highest ratings and follow the rec-
ommended strategy, i.e.

V:Z(bi (6:(K)) — ci (0:(K))) (11)
This means that the recommended strategy profile o(K) for
the highest ratings determines the social welfare that can be
achieved by the rating protocol. If this strategy profile can be ar-
bitrarily chosen, then we can solve a similar problem as (5) for
the obedient agent case. However, in the presence of self-inter-
ested agents, this strategy profile, together with the other com-
ponents of a rating protocol, need to satisfy the equilibrium con-
straint such that self-interested agents have incentives to follow
the recommended strategies. In Theorem 1, we identify a suffi-
cient and necessary condition on ¢( K) such that an equilibrium
rating protocol can be constructed. With this, we are able to de-
termine the optimal rating protocol in a distributed way in order
to maximize the social welfare. We denote the social welfare
that can be achieved by the optimal rating protocol as V* and
use the price of anarchy (PoA), defined as PoA = VP /V* as
the performance measure of the rating protocol.

A. Sufficient and Necessary Condition

To see whether a rating protocol can constitute a PLE, it suf-
fices to check whether agents can improve their long-term util-
ities by one-shot unilateral deviation from the recommended
strategy after any history (according to the one-shot deviation
principle in repeated game theory [24]). Since in the rating pro-
tocol, the history is summarized by the ratings, this reduces to
checking the long-term utility in any state (i.e. any rating profile
# of agents). Agent ’s long-term utility when agents choose the
action profile a is

Ui(8;a) = ui(B;a) + 6 _ p(8'|6:0)U; (0),

'y

(12)

where p(8'|6;a) is the rating profile transition probability
which can be fully determined by the rating update rule based
on agents’ actions and U;(8') is the optimal value of agent
i at the rating profile #', i.e. U¥(#') = maxU;(8;a). PLE
requires that the recommended actions for an; rating profile are
the optimal actions that maximize agents’ long-term utilities.
Before we proceed to the proof of Theorem 1, we prove the
following Lemma, whose proof is deferred to the Appendix.

Lemma 1:

1) V8, the optimal action of agent ¢ is either a}(#) = 0 or

a:(8) = o;(6;).

2

2) V4, if for éL =K,af(0) = ai(éi), then for any other éi,

a;(0) = 0:(0;). )

3) Let#; = K, suppose ‘y’Hi,aj(O) =o0,(0;),thenf; < 0] &

U (0:,0:) < UZ(6,6:)

Lemma 1.1 characterizes the set of possible optimal actions.
That is, self-interested agents choose to either share nothing
or the recommended amount of information/goods with their
neighbors. Lemma 1.2 states that if an agent has an incentive to

follow the recommended strategy when all its neighbors have
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the highest ratings, then it will also have an incentive to follow
the recommended strategy in all other cases. Lemma 1.3 shows
that the optimal long-term utility of an agent is monotonic in
its rating when all its neighbors have the highest ratings—the
higher the rating the larger the long-term utility the agent ob-
tains. With these results in hand, we are ready to present and
prove Theorem 1.

Theorem 1: Given the rating protocol structure and the net-
work structure, at least one rating protocol can be constructed
to be a PLE if and only if 6b;(6(K)) > ci(0:(K)), Vi.

Proof: (Sketch): For the sake of conciseness, we provide
only the proof sketch of Theorem 1. The complete proof can
be found in Appendix. According to Lemma 1.2, it suffices to
ensure that agent 7 has an incentive to take the recommended
strategy when it neighbors’ ratings are #; = K. However, we
need to prove that this holds for all ratings of agent . To prove
the “only if” part, we show that if 6b;(6;) < ¢;(6;), Vi, then no
rating protocol can constitute a PLE by showing a contradiction.
To prove the “if” part, we construct a binary rating protocol
that can constitute a PLE when 66;(6;) > ¢;(6;) is satisfied. In
particular, we choose a; » = [3; 1 = 1, V1 as the rating update
probabilities in such a rating protocol. ]

B. Computing the Recommended Strategy

Theorem 1 provides a sufficient and necessary condition for
the existence of a PLE with respect to the recommended strate-
gies when agents have the highest ratings. From (11) we already
know that these strategies fully determine the social welfare that
can be achieved by the rating protocol. Therefore, the optimal
values of 6(K') can be determined by solving the following op-
timal recommended strategy design problem:

Y (b (6i(K)) = ci (0:(K)))

e (04(K)) < 8y (6:(K
c>0

maximize
o

subject to ), Vi

(13)

where the constraint ensures that an equilibrium rating protocol
can be constructed. Note that this problem implicitly depends
on the network since both &;(K') and o (K ), Vi are network-
dependent (since for each agent ¢, the strategy is only towards
its neighbors). In this subsection, we will write &, (K ) as ¢; and
0;(K) as 6; to keep the notation simple.

Firstly, we show the strong duality holds for the problem (13)
under mild conditions.

Proposition 1: Strong duality holds for (13) if the following
condition on the benefit function holds: Vi € A

ob;(z; 1;
Wilg) (14)
z-0 O
Proof: ltis easy to see that the problem in (13) is a convex
optimization problem. According to the Slater’s condition [25],
strong duality holds if there exists a strictly feasible solution o
such that
C; (O'Z(K)) < 5b1(6’z). Vi
>0 (15)
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i.e. a solution such that the non-linear constraints are strictly
satisfied.

Consider agent ¢, we find its neighbor j* such that
o= arg max (0b;(2;)/0x5;)|, _o. We construct a

strategy &; such that O+ = € and o = 0¥ # j*.
Because (9b;(2;)/0x;-i)|,_g > (di/d) and the b;(%;)
is concave, we can always find an € > 0 such that
(0b;(x;) /O~ L)|x —é, (d;/6). Hence, for any € € (0,€),
bi(6:) > (d;/8) > (c (ai)/(ﬁ"). The last inequality is because
the cost of agent 7 is at most ¢;(a;) < d;. If we do this for all
agents, then we find a strategy profile ¢ that is a strictly feasible
solution. [ |

The condition in the above proposition requires that each
agent can obtain a sufficiently large marginal benefit at 0 from
at least one of its neighbors. This is a mild condition and holds
for numerous benefit functions such as the Dixit-Stiglitz utility
function in (2). Moreover, (15) is rather conservative: in many
problems, the right-hand side of (15) can be much smaller.

Now, we propose a distributed algorithm to compute
these recommended strategies using the dual decomposition
method [23], [25]. The idea is that we decompose the Optimal
Recommended Strategy Design problem (13) into /N sub-prob-
lems each of which is locally solved for each agent. Note that
unlike the case with obedient agents, these sub-problems have
coupled constraints. Therefore, the software of agents will need
to go through an iterative process to exchange messages (i.e.
the Lagrangian multipliers) with their neighbors such that their
local solutions converge to the global optimal solution. We
describe the algorithm in detail below.

We perform dual decomposition on (13) and form the partial
Lagrangian,

Lig.X) = Y (bi(6:) — cil0:)) + Z A (ci(oi) — 8bi(6))

i

L XB)bi(6:) — S (L4 X))o

Jigij=1

=2 |l
23" L6,

where A; > 0 is the Lagrange multiplier associated with the
incentive constraint of agent 7. The second equality is due to the
linearity of the cost function. The master dual problem is,

(16)

mini}{nize g(A)

= o

Ai 2 0,V (17)

subject to

where g(A) = max L{e,A). When strong duality holds, the

optimal value g*(A) equals the optimal value of the original
primal problem (13). Next, we solve g*(A) using the subgra-
dient method. A subgradient of —g is as follows: for A;, the
subgradient is ¢; (o (X)) — &b;(a7 (X)). Therefore, we need to
solve the optimal () for a given A to get the subgradient. No-
tice that the Lagragian L(o, ) can be separated into N sub-La-
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grangians L;(0;, A;), we can obtain &7, Vi by solving each sub-
problem individually,

[+ X6]bi(6:) — > (14 X)05

Jigi=1

maximize
og;

(18)

The above problem is a convex optimization problem and
hence is easy to solve. Now we have found the subgradient,
that master algorithm updates the dual variable A based on this
subgradient,

Na+1)=[Alg)+w (ci (07 (M)~ b (67 (A()))] ", ¥

(19)
where ¢ is the iteration index, w > 0 is a sufficiently small pos-
itive step-size. Because (13) is a convex optimization, it is well
known [25] that such an iterative algorithm will converge to the
dual optimal A* as ¢ — oo and the primal variable 6*(A(q))
will also converge to the primal optimal o*.

This iterative process can be made fully distributed which
requires only limited message exchange between the software
clients of neighboring agents. We present the Distributed Com-
putation of the Recommended Strategy (DCRS) Algorithm
below which is run locally by the software client of each agent.

Algorithm: Distributed Computation of the Recommended
Strategy (DCRS)

(Run by the software client of agent 2)

Input: Connectivity and utility function of agent .
Output: 6,(K) = {oy; (K)}j:gﬂ:1 (denoted by
o, = {Uij};‘;qijzl for simplification)

Initialization:, ¢ = 0; A;(¢) = 0

Repeat:

Send A;(g¢) to neighbor j, Vj : ¢;; = 1.
(Obtain A;(q) from 7, Vj)

Solve (18) using Ai(q), {A;(9)} ..

Send 0;(A(g)) to neighbor 7, Vj : g;; = 1.
(Obtain o;;(A(g)) from j, Vj)

Update A;(g + 1) according to (19).

Stop until ||A;i(g + 1) — A;i(q)]l, < ex

_, to obtain a;(A(g)).

The above DCRS algorithm has the following interpretation.
In each configuration slot, the software client of each agent com-
putes the sharing actions of the agent’s neighbors that maximize
the social surplus with respect to its own agent (i.e. the ben-
efit obtained by its own agent minus the cost incurred by its
neighbors). However, this computation has to take into account
whether neighboring agents’ incentive constraints are satisfied,
which are reflected by the Lagrangian multipliers. The larger A;
is, the more likely it is that agent ¢’s incentive constraint is vio-
lated. Hence, the neighbors of agent : should acquire less infor-
mation/goods from it. We note that the DCRS algorithm needs
to be run to compute the optimal strategy only once at the be-
ginning if the network is static.

(1-e)p

1 —ex

1—(1—¢€)p

€

Fig. 2. Markov chain of the rating transition.

C. Computing the Remaining Components of the Rating
Protocol

Even though the DCRS algorithm provides a distributed way
to compute the recommended strategy when agents have the
highest ratings, the other elements of the rating protocol remain
to be determined. There are many possible rating protocols that
can constitute a PLE given the obtained recommended strate-
gies. In fact, we already provided one way to compute these re-
maining elements when we determined the sufficient condition
in Theorem 1 by using a constructive method. However, this
is not the most efficient design in the imperfect monitoring sce-
nario where ratings will occasionally drop due to monitoring er-
rors. Therefore, the remaining components of the rating protocol
should still be smartly chosen in the presence of monitoring er-
rors. In this subsection, we consider a rating protocol with a bi-
nary rating set © = {1,2} and0;;( = 1) =0, Vi, j : g;5 = 1.
We design the rating update probabilities c; 2, §; 1, Vi to maxi-
mize the social welfare when monitoring error exists.

Proposition 2: Given a binary rating protocol © = {1,2},
0:3(2), V4,4 : g;; = 1 determined by the DCRS algorithm and
0:;(1) = 0,Vi,j : g;; = 1, when the monitoring error >0,
the optimal rating update probability that maximize the social
welfare is, Vi, 571 = 1, o] 5 = ¢;(6:(2))/0b;(6:(2))

Proof: The social welfare is the time-average sum utility
of all agents. Therefore, we need to maximize the expected
utility for each individual agent. Since we consider a binary
rating protocol, let n},n? be the probability that agent ¢ has
rating 1 and rating 2, respectively. Note that 5} + 77 = 1.
The expected time-average utility of agent ¢ can be written as
EV; = n}u;(1) + n?u;(2). Since the utility of having a higher
rating is larger than that of having a lower rating, ©;(2) > u;(1).
Therefore, in order to maximize EV;, we need to maximize 77.
Given «; 2, 3;.1, we can determine "17:2 by solving the stationary
distribution of a two-state Markov chain. In this Markov chain,
the states are the ratings and the transition probabilities are de-
picted in Fig. 2. A simple calculation of this Markov chain yields
the solution of 2 = (1), 1 /(s 2 + (1-)Bi.1).

Now, in order to maximize 7?7, it is equivalent to maximize
3.1/ ;2. However, «; 2 and ;1 are subject to the incentive
constraints and we can derive the feasible values of «t; 2, 3; 1, Vi
as follows,

1-4 ¢ (04(2))
§ b (6:(2) — ci(0:(2))
1=6(1 = fi1) ¢ (0:(2))
(5 bi (&1(2))

Biq >

Qi >

(20)

For any f3; 1, the optimal value of «; » is the binding value
of second inequality in (20) and hence, we need minimize [1 —
8(1 — 3;1)]/i 1. Because [1 — (1 — 8;1)]/8:.1 is decreasing
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A~ 47 =05 — (2)
(1 )———H2) @ =1
 aF=05 “_ . ;
opt _
o a =0.33
a =05 af'=05 = =1~
(1 )—— 8 )
4 =05 =05 .. WP 03\3;/
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Fig. 3. Optimal strategies for obedient agents.
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Fig. 4. Optimal strategies for strategic agents.

in 3; 1, the optimal value of 3; 1 is 8; = 1. Using (20) again,
the optimal value of o , = ¢;(6(2))/6b;(6,(2)). |

It is worth noting that these probabilities can be computed
locally by the software of the agents which do not require any
information from other agents.

D. Illustrative Rating Protocols

In this section we show how the rating protocol can be de-
termined in a distributed manner given the network structure.
Specifically, we consider a set of 4 agents performing coopera-
tive estimation (as in Section III-D) over two fixed networks—a
ring and a star. A possible approximation of the utility function
of each agent ¢ when the uniform combination rule is used is
ui(a(t)) = ['er('rQ/(l—ij:gM_ aji))] = 2.y, @ij- Weassume
that the noise variance r? = 4. Fig. 3 illustrates the optimal ac-
tions in different networks by solving (5). In both networks, the
optimal social welfare is V°P* = 4. Fig. 4 illustrates the optimal
recommended strategies computed using the method developed
in this section for these two topologies (assuming ¢; — 0, V7).

In the ring network, agents are homogeneous and links are
symmetric. As we can see, the optimal recommended strategy
o* is exactly the same as the socially optimal action profile a“**
for obedient agent case because a°?? already provides sufficient
incentive for strategic agents to follow. Therefore, we can easily
determine that PoA = 1. However, the strategic behavior of
agents indeed degrades the social welfare in other cases, es-
pecially when the network becomes more heterogeneous and
asymmetric, e.g. the star network. Even though taking a°?* max-
imizes the social welfare V“?* = 4 in the star network, these
actions are not incentive-compatible for all agents. In partic-
ular, the maximum welfare V°P* = 4 is achieved by sacrificing
the individual utility of the center agent (i.e. agent 1 needs to
contribute much more than it obtains). However, when agents
are strategic, the center agent will not follow these actions a°?*
and hence, V°?* = 4 cannot be achieved. More problemati-
cally, since the center agent will choose not to participate in the
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sharing process, the periphery agents do not obtain benefits and
hence, they will also choose not to participate in the sharing
process. This leads to a network collapse. In the proposed rating
protocol, the recommended strategies satisfy all agents’ incen-
tive constraints, namely 6b;(6:(K)) > ¢;(0,(K)), Vi. By com-
paring a°?* and ¢*, we can see that the rating protocol recom-
mends more sharing from the periphery agents to the center
agent and less sharing from the center agent to the periphery
agents than the obedient agent case. In this way, the center agent
will obtain sufficient benefits from participating in the sharing.
However, due to this compensation for the center agent, the PoA
is increased to PoA = 1.036.

V. PERFORMANCE ANALYSIS

In this section, we analyze the performance of the rating pro-
tocol and try to answer two important questions: (1) What is the
performance loss induced by the strategic behavior of agents?
(2) What is the performance improvement compared to other
(simple) incentive mechanisms?

A. Price of Anarchy

Consider the social welfare maximization problems (5)
and (13) for obedient agents and strategic agents (by using
rating protocols), respectively. It is clear that the social welfare
achieved by the rating system is always no larger than that
obtained when agents are obedient due to the equilibrium
constraint; hence, i.e. PoA > 1. The exact value of PoA will,
in general, depend on the specific network structure (topology
and individual utility functions). In this subsection, we identify
a sufficient condition for the connectivity degree of the network
such that PoA is one. To simplify the analysis, we assume
that agents’ benefit functions are homogeneous and depend
only on the sum sharing action of the neighboring agents,
ie. bi(a;) = b(zﬁqu:1 @;;). Recall that d; = Z] gi; is the
number of neighbors of agent i. The degree of network G is
defined as d = maxd,.

Proposition 3: If the benefit function satisfies bi(a;) =
b(>" igii=1 a;), Vi and the sharing action is upper-bounded
ai; < 1,Vi, j, then there exists a d such that ifd < d, PoA = 1.

Proof: Due to the concavity of the benefit function (As-
sumption 1), there exists d* such that if d > d*, b(d) — d is
increasing and if d < d*, b(d) — d is decreasing. If the connec-
tivity degree satisfies d < d*, then the optimal solution of (5) is
ai; = 1,Vi,7 ¢ g;; = 1. That is, optimality is achieved when
all agents share the maximal amount of information/goods with
all their neighbors. Therefore, Vd < d*, the agent ’s benefit is
b(d;) and its cost is d; in the optimal solution. Moreover due to
the concavity of the benefit function, there exists d** such that
ifd > d**,6b(d) —d < Oand ifd < d**, 6b(d) —d > 0. There-
fore, if d < d**, then agents’ incentives are satisfied. There-
fore if we let d = min{d*,d**}, then Vd < d, all agents have
incentives to share the maximal amount of information/goods
with their neighbors in which case the social optimum is also
obtained. Hence, PoA = 1. [ ]

Proposition 3 states that when the connectivity degree is low,
the proposed rating protocol can achieve the optimal perfor-
mance even when agents are strategic.
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B. Comparison With Direct Reciprocation

The proposed rating protocol is not the only incentive mecha-
nism that can incentivize agents to share information/goods with
other agents. A well-known direct reciprocation based incentive
mechanism is the Tit-for-Tat strategy, which is widely adopted
in many networking applications [7], [8]. The main feature of
the Tit-for-Tat strategy is that it exploits the repeated bilateral
interactions between connected agents, which can be utilized to
incentivize agents to directly reciprocate to each other. How-
ever, when agents have asymmetric interests, such mechanisms
fail to provide such incentives and direct reciprocity algorithms
cannot be applied.

Moreover, even if we assume that interests are symmetric be-
tween agents, our proposed rating protocol is still guaranteed
to outperform the Tit-for-Tat strategy when the utility function
takes a concave form as assumed in this paper. Intuitively, be-
cause the marginal benefit from acquiring information/goods
from one neighbor is decreasing in the total number of neigh-
bors, agents become less incentivized to cooperate when their
deviation towards some neighboring agent would not affect fu-
ture information/goods acquisition from others, as is the case
with the Tit-for-Tat strategy. In the following, we formally com-
pare our proposed rating protocol with the Tit-for-Tat strategy.
We assume that an agent 2 has two possible actions towards its
neighboring agent 5 from: either no cooperation at all, or a fixed
sharing action, i.e. {0, a;;} where @;; € R,. The Tit-for-Tat
strategy prescribes the action for each agent ¢ as follows, Vj :
gi; = 1,

aij(()) = @y
a;;(t+1)= { gm ifaji(f) = aj:

if(Lji(t) =0 vt 2 0

e2y)

Proposition 4: Given the network structure and the discount
factor, any action profile @ that can be sustained by the Tit-
for-Tat strategy can also be sustained by the rating protocol.

Proof: Consider the interactions between any pair of
agents 1, 7. In the Tit-for-Tat strategy, the long-term utility of
agent ¢ by following the strategy when agent j played a;; in
the previous period is U; = (bi(azi) — @)/ (1 — &) where
bi(x) = bildilaxi = @wi,0j; = ). If agent ¢ deviates in
the current period, Tit-for-Tat induces a continuation history
({@i;,0},{0,a;i},{a@;;,0}...) where the first components
are agent ¢’s actions and the second components is agent j’s
actions. The long-term utility of agent # by one-shot deviation
is thus

- . ?)l(O) — @i ‘Bi(fl“i)
UL,:bL((JJ[)"r(S 1—(52 J +(51—7(§Q
?),;((1:,;) ?),(0) — Q4
:1_352—‘,—(5 1_521 (22)

Incentive-compatibility requires that UU; > U/ and therefore

6 (Bilai) - Bu(0) > @y, (23)

Due to the concavity of the benefit function, it is easy to see
that (23) leads to 8b;(@;) > ¢;(@a;) which is a sufficient condition
for the rating protocol to be an equilibrium. [ |

Proposition 4 proves that the social welfare achievable by the
rating protocol equals or exceeds that of the Tit-for-Tat strategy,
which confirms the intuitive argument before that diminishing
marginal benefit from information/goods acquisition would re-
sult in less incentives to cooperate in an environment with only
direct reciprocation than in one allowing indirect reciprocation.
We note that different action profiles @ will generate different
social welfare. However, computing the best @ among the incen-
tive-compatible Tit-for-Tat strategies is often intractable since
(23) is a non-convex constraint. Hence, implementing the best
Tit-for-Tat strategy to maximize the social welfare is often in-
tractable. In contrast, the proposed rating protocol does not have
this problem since the equilibrium constraint established in The-
orem 1 is convex and hence, the optimal recommended strategy
can be solved in a distributed manner by the proposed DCRS
algorithm.

VI. DYNAMIC NETWORKS

In Section IV, we designed the optimal rating protocol by
assuming that the network is static. In practice, the social net-
work can also change over time due to, e.g., new agents en-
tering the network and new links being created. Nevertheless,
our framework can easily handle such growing networks by
adopting a simple extension which refreshes the rating protocol
(i.e. re-computes the recommended strategy, rating update rules
and re-initializes the ratings of agents) with a certain probability
each period. We call this probability the refreshing rate and de-
note itby p € [0, 1]. When networks are dynamic, the refreshing
rate will also be an important design parameter of the rating
protocol.

A. Refreshing Rate Design Problem

Denote the network in period ¢ by G(£). We assume that in
each period an expected number n(t) of new agents enter the
network and stay forever. Therefore, the network G (¢ + 1) will
be formed based on G(¢) and the new agents. Note that before
the next protocol refreshing, these new agents do not create ben-
efits to or obtain benefits from their neighbors due to the in-
centive problem. Let V°?*(G(T); p) be the optimal social wel-
fare and V*(G(T); p) be the social welfare achieved by the
rating protocol starting from a network GG for a refreshing rate
p. Our objective is to minimize the PoA by choosing a proper
p. The optimal social welfare V°P*(G(T); p) can be computed
as follows,

V(G ) = E Y o1 = ) s SV (G 4 7))

t=0 24

Due to the refreshing, agents’ discount factor effectively be-
comes (1 — p)6. Therefore, the social welfare achieved by the
rating protocol V*(G(T)); p) can be obtained by solving the fol-
lowing optimization problem

Y (b (6:(K) = e (0:(K)))

i Eai(K)) <(1—p)ob; (6:(K)),Vi
c>0

T=0

maximize
o

subject to
(25)
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Formally, the refreshing rate design problem is formulated as
the following optimization problem,
o a VPH(G(T); p)
minimize PoA(p) = ———+—=
) W)= Gy )
subjectto V' (G(T); p) is computed by (24)

V*(G(T); p) is solved by (25) (26)

B. Impact of the Refreshing Rate

In this subsection, we study the impact of p on V*(G(T'); p)
and V°PY(G(T); p) separately and then provide guidelines on
choosing the optimal p* that minimizes PoA(p).

Proposition 5: Both V*(G(T); p) and V' (G(T); p) are
non-increasing in p.

Proof: Since V*(G(T);p) is the optimal solution of
(25), relaxing the constraints by decreasing p weakly increases
V*(G(T); p). Therefore V*(G(T); p) is non-increasing in p.

It is easy to show that V°7*(G(T + 7)) is non-decreasing in 7
because we can let the new agents share nothing and the existing
agents keep their previous strategies. Then according to (24) it
is easy to see that V°7*(G(T); p) is non-increasing in p. |

Proposition 5 shows the monotonicity of V*(G(T); p) and
VoPt(G(T); p) with respect to p. If p is smaller, then there are
more new entering agents and hence, the time-average optimal
social welfare is larger. Moreover, since a smaller p means a
more static rating protocol, the existing agents have more in-
centives to follow it.

Proposition 6: (1) /11_)1111 PoA{p) — o0. Q) If Vta > 14,

VoPt(G(ta)) — VPG (1)) > k > 0, then lin%]PoA(p) — 0.
p—
3) Iftlim Vort(G(t)) — Vort(G(T)) < «, then lin%] p* — 0.
Proof: (1) Because VPY(G(T);1) = VoPY(G(T)) > 0
and V*(G(T);1) = 0, lin%) PoA(p) — o0. (2) Since in each
p—

time the increase of the optimal social welfare is at least a
constant positive value, lin%) VePt(G(T); p) — oc. Because

VHG(T);0) = V*G(T)) > 0, lin}) PoA(p) — oc. (3)
p—
x — 0 implies that hI% Vort(G(T); p)y — VoPY(G(T)). Since
p—

V*(G(T); p) is non-increasing in p, PoA(p) is non-decreasing
in p. Therefore l_in%] p* — 0. [ ]

The first two ’I);rts of Proposition 6 reveals the impact of the
refreshing rate on the PoA in two different ways. On one hand,
a larger refreshing rate provides less incentives for agents to
follow the current rating protocol designed in time 7'. One the
other hand, a smaller refreshing rate leads to a worse adaptation
of the rating protocol to the changing network. Therefore, the
optimal refreshing probability p* should be neither too larger
nor too small. The third part states that if the speed of the optimal
social welfare increase tends to 0 sufficiently quickly (e.g. the
arrival rate of new agent is sufficiently smaller), then the optimal
refreshing rate tends to be 0, i.e. the protocol is almost never re-
freshed. This is intuitive since if the network changes extremely
slowly, then we almost do not need to refresh the rating protocol.

C. Exiting Agents

The proposed rating protocol with refreshing can also be ap-
plied to the general dynamic networks with both entering and
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exiting agents. However, when agents are exiting, unlike (25),
the social welfare V*(G(T); p) that can be achieved by the
rating protocol is difficult to characterize analytically. In par-
ticular, agents’ incentives can be affected in different ways for
different networks and V*(G(T); p) could be 0 in the worst
case. Below we provide two examples that illustrate the dif-
ferent impacts.

1) Consider a star network with N periphery agents where
at time T each periphery agent shares one unit of infor-
mation/goods with the center agent and vice versa. The
center agent’s incentive constraint satisfies ¢(N) < (1 —
p)6b(N). Suppose one periphery agent exits the network
before the next refreshing update of the rating protocol.
The center agent then receives one less unit of informa-
tion/goods and needs to send one less unit of information/
goods. If N is large, the incentive constraint of the center
agent is still satisfied ¢(N —1) < (1—p)éb(N —1) since the
benefit function is concave. Because the center agent still
has an incentive to follow the recommended strategy with
respect to the remaining periphery agents, the remaining
periphery agents’ incentives to follow the recommended
strategy are not affected. Therefore, the rating protocol
works efficiently before the next refreshing update.

2) Consider a ring network where at time 1" each agent has
the incentives to follow the recommended strategy which
recommends sharing one unit of information/goods to its
right-hand side neighbor. Each agent’s incentive constraint
satisfies ¢(1) < (1—p)6b(1)p. Suppose a single agent exits
the network before the next refreshing update of the rating
protocol. In this case, the incentive of its right-hand side
neighbor to follow the recommended strategy is violated
since all its benefit disappears. More problematically, this
will cause a “chain effect” which leads top all remaining
agents not sharing any information/goods with others. In
such scenarios, the rating protocol fails to provide agents
with sharing incentives.

From the above two examples, we see that it is significantly
more difficult to understand the incentives of agents for the case
with agents exiting since the game played by the agents may
change in unpredictable ways. In this case, we may require other
game theoretical concepts and tools to tackle this problem. One
possible solution is making conjectures and using the notion
of conjectural equilibrium [31] or using social learning [1]. We
leave this as an interesting future research topic.

VII. ILLUSTRATIVE RESULTS

In this section, we provide simulation results to illustrate
the performance of the rating protocol. In all simulations,
we consider the cooperative estimation problem introduced
in Section III-A. Therefore, agents’ utility function takes the
form of u;(a(t)) = [r? — MSE;(a:(t))] — a:(t) [28]. We will
investigate different aspects of the rating protocol by varying
the underlying topologies and the environment parameters.

A. Impact of Network Connectivity

Now we investigate in more detail how the agents’ connec-
tivity shapes their incentives and influences the resulting social
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welfare. In the first experiment, we consider the cooperative es-
timation over star topologies with different sizes (hence, dif-
ferent connectivity degrees). Fig. 5 shows the PoA achieved by
the rating protocol for discount factors 6 = 1, 0.9, 0.8, 0.7 for
the noise variance r? = 8. As predicted by Proposition 3, when
the connectivity degree is small enough, the PoA equals one
and hence, the performance gap is zero. As the network size
increases (hence the connectivity degree increases in the star
network), the socially optimal action requires the center agent
to share more with the periphery agents. However, it becomes
more difficult for the center agent to have incentives to do so
since the sharing cost becomes much larger than the benefit. In
order to provide sufficient incentives for the center agent to par-
ticipate in the sharing process, the rating protocol recommends
less sharing from the center agent to each periphery agent. How-
ever, incentives are provided at a cost of reduced social welfare.
Fig. 5 also reveals that when agents’ discount factor is lower
(agents value less the future utility), incentives are more diffi-
cult to provide and hence, the PoA becomes higher. Since our
applies to any benefit function that satisfies the Assumption, we
show in Fig. 6 the PoA for different noise variances 72 for dis-
count factor 6 = 0.9. As we can see that the above analysis
holds for other values of +2. Moreover, as the noise variance
increases, PoA is smaller for the same network size. This is be-
cause the benefit from cooperation increases and hence, agents
are more likely to cooperate at the optimal level.

TABLE III
PERFORMANCE FOR VARIOUS d°F IN SCALE-FREE NETWORKS
dsr e=0 e =0.05 e=0.1
5 Mean 1.151 1.174 1.199
Variance 5.9¢-3 6.2¢-3 6.4¢-3
3 Mean 1.154 1.177 1.203
Variance 8.6e-3 8.8e-3 9.2e-3
4 Mean 1.002 1.023 1.046
Variance 3.1e-5 2.9e-5 2.7e-5
5 Mean 1.001 1.022 1.044
Variance 1.6e-5 1.5e-5 1.4e-5
6 Mean 1.000 1.022 1.046
Variance ~0 5.3e-7 2.5¢-6
TABLE IV
PERFORMANCE FOR SCALE-FREE NETWORKS OF DIFFERENT SIZES
dF | N=100 | N=200 [ N=500
2 1.174 1.173 1.176
3 1.177 1.175 1.179
4 1.023 1.023 1.023
5 1.022 1.021 1.022
6 1.022 1.022 1.020

In the next simulation, we study scale-free networks in the im-
perfect monitoring scenarios. We used the standard Barbasi-Al-
bert (BA) model to create the networks [27]. In scale-free net-
works, the number of neighboring agents is distributed as a
power law (denote the power law parameter by d°%"). Table III
shows the mean and variance of PoA achieved by the rating pro-
tocol developed for various values of d°%" and different moni-
toring error probabilities €. The noise variance is set to be 7> = 4
and the discount factor is 6 = 0.8. Each result is obtained by
running 100 random trials. As we can see, the proposed rating
protocol achieves close-to-optimal social welfare in all the sim-
ulated environments. In Table IV, we further show the achiev-
able PoA by the proposed rating protocol for scale-free net-
works of different sizes when € = 0.05. Since the considered
network is scale-free, the performance is similar for different
network sizes.

B. Comparison With Tit-for-Tat

As mentioned in the analysis, incentive mechanisms based
on direct reciprocation such as Tit-for-Tat do not work in net-
works lacking bilateral interests between connected agents and
hence, reasons to mutually reciprocate. In this simulation, to
make possible a direct comparison with the Tit-for-Tat strategy,
we consider a scenario where the connected agents do have
bilateral interests and show that the proposed rating protocol
significantly outperforms the Tit-for-Tat strategy. In general,
computing the optimal action profile @* for the Tit-for-Tat
strategy is difficult because it involves the non-convex con-
straint 6(b; ({@;}y.,, —1) — 0il{@hitisyy,=1-0) 2 @j,
Ve, V3 # 4 @ g;; = 1; such a difficulty is not presented in
our proposed rating protocol because the constraints in our
formulated problem are convex. For tractability, here we con-
sider a symmetric and homogeneous network to enable the
computation of the optimal action for the Tit-for-Tat strategy.
We consider a number N = 100 of agents and that the number
of neighbors of each agent is the same d; = d,Vi and each
agent adopts a symmetric action profile a,; = a,Vi,j. The



XU et al.: SHARING IN NETWORKS OF STRATEGIC AGENTS

1.7¢ A --A
ool = A=
16+ =T =
HET —=— Rating Protocol 3 = 0.8
15+ .7 -< -Tit-for-Tatd = 0.8

, 41% —*— Rating Protocol & = 0.6

< - © -Tit-for-Tat5 = 0.6
& 43t —p— Rating Protocol § = 0.4
- A-Tit-for-Tat§ = 0.4
1.2¢
110 ’g__f}_-e- G === = = =G
1553——4——*4%——43—'4’-—ﬁ"*é‘"
0'9 1 L 1
2 4 6 8 10

connectivity degree d

Fig. 7. Performance comparison with Tit-for-Tat.

TABLE V
POA OF RATING PROTOCOLS WITH DIFFERENT REFRESHING RATES
[ p [0.005] 0.02 | 0.04 ] 0.06]0.080.10 | 0.12 | 0.14 |
[PoA | 1.35 | 1.20 | 1.18 | 1.02 [ 1.25 | 1.29 | 1.34 | 1.41 |

noise variance is set to be > = 4 in this simulation. Fig. 7
illustrates the PoA achieved by the proposed rating protocol
and the Tit-for-Tat strategy. As predicted by Proposition 4, any
action profile that can be sustained by the Tit-for-Tat strategy
can also be sustained by the proposed rating protocol (for the
same ¢). Hence, the rating protocol yields at least as much
social welfare as the Tit-for-Tat strategy (for the same o).
As the discount factor becomes smaller, agents’ incentives to
cooperate become less and hence, the PoA is larger. Note that
for § = 0.6, 0.8, our rating protocol achieves PoA = 1 for all
connectivity degrees.

C. Rating Protocol With Refreshing

Finally, we consider the optimal choice of the rating pro-
tocol refreshing rate p when the network is growing as consid-
ered in Section VI. In this simulation, the network starts with
N = 50 agents. In each period, a new agent enters the net-
work with probability 0.1 and stays in the network forever. Any
two agents are connected with a priori probability 0.2. We vary
the refreshing rate from 0.005 to 0.14. Table V records the PoA
achieved the rating protocol with refreshing for 6 = 0.4. It
shows that the optimal refreshing rate needs to be carefully
chosen. If p is too large, the incentives for agents to cooperate is
small hence, the incentive-compatible rating protocol achieves
less social welfare. If p is too small, the rating protocol is not
able to adapt to the changing network well. This introduces more
social welfare loss in the long-term as well. The optimal re-
freshing rate in the simulated network is around 0.04.

VIII. CONCLUSIONS

In this paper, we provided a framework for designing incen-
tives protocols (based on ratings) aimed at maximizing the so-
cial welfare of strategic agents which are repeatedly sharing in-
formation/goods across a network. Our rating protocols can be
implemented in a distributed and informationally decentralized
manner and achieve much higher social welfare than existing
incentive mechanisms. Our framework and analysis can also be
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used to provide guidelines for designing and planning social,
economic and engineering networks of strategic agents, such
that the social welfare of such networks is maximized. The pro-
posed ratings framework can also be used to design protocols for
a wide range of engineering networks where strategic agents in-
teract—communications networks, power networks, transporta-
tion networks, and computer networks.

APPENDIX A
PROOF OF LEMMA 1

(1) Consider any action a;(f) # ai(@,-). According to the
rating update rule, p(6'|0, a;(6)) = p(#'|8, 0). Since u;(6,0) >
u;(0,a;(0)), we can see that U;(6,0) > U,;(8.a;(6))). There-
fore, there are only two possible actions that can potentially
maximize the long-term utility.

(2) According to part (1), there are only two possible actions
that can be optimal. First, we note that the continuation utility
difference by choosing these two actions is

(52]} (0/|9,0'i ; ) U* -6 Zp 9 4,) @7
o

which is independent of other agents’ ratings é, when we con-
sider agent i’s one-shot unilateral deviation. This is because the
benefit that an agent can potentially receive only depends on its
own rating while the cost that the agent incurs depends only on
its neighbors’ ratings. The benefit is determined by agent ’s cur-
rent action since different actions lead to different transitions of
only agent ¢’s own rating. The costs are cancelled out because
the neighbors’ ratings are independent on agent #’s actions.
It is obvious that the current period utility different satisfies,

w ((6;, K),0) — u; (((),-,K),a,-(éi))
Z U; ((91‘,,0,1‘),0) — Uy <(6i:07i)70’i(9i)> ,Vé),i (28)

If for 8 _; = K, the optimal action of agent i is a¥ = ai(éi),
then the following holds,

u; ((0:,K),0) — u; (((#,K)aﬂi(éi))

<63 p(818.0:(80) U7 (B)—6 > p(818.0)U; (B;) (29)
0’ @’

which means that the following is also true,

w; ((6;,04),0) — u; ((9i,0,i),a,;(é,¢)) YO

<53 p (0’|a,a,-,(9,,-,)) 521) (@16.0)U(8;)  (30)
0/

Therefore, for any other 8 _;, the optimal action of agent 7 is also

ar = 0,(0,).

?

(3) To simplify notations, we suppress K in the utility and
simply write U (#;) instead of U}(6;,8;). We also write J; »
as Ji. The value functions can be obtained by solving the fol-
lowing recursive equations,

Ui (K)=u(K, ;) + U (K)
UK - 1)=u(K —1,0;)
+ 6 (Br-1U (K) + (1 = Br-1)US (K - 1))
Ui(D)=u(l,0:) + 6 (51U7(2) + (1 = p)UF (1)) (1)



730 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 8, NO. 4, AUGUST 2014

We prove by induction. Suppose U ({) > Uf({ —1),VI: K >
I > k+1. We need to show that U (k) > U(k—1). The value
functions of level £ and & — 1 are

Ur(k) = ui(k,0:) + 6 (BeUF (b + 1) + (1 = B)UF(K))
UL*(/% — 1) :’Uq‘(]ﬁ} — 1,0‘i)

+ 6 (B U (k) + (1= B)US (k1)) (32)

To prove U7 (k) > UF(k — 1), we use contradiction. Suppose
Ur(k) < Uf(k — 1), then

Ut (k) > ui(k, 07) + SUF (k)
Ur(k — 1) <ui(k — 1,0;) + Uk — 1)

K3

(33)

This leads to «; (k. &;) < u;(k—1,0;) which is a contradiction.
Hence, it only remains to prove U;*(K) > UF(K —1). This can
be easily shown by computing U (K) — U (K — 1), i.e.
w(K,6;)—u,(K—-1,0;)
1-6(1—Pr1)

Ur(K)-U/(K-1) = >0 (34)

This completes the proof.

APPENDIX B
PROOF OF THEOREM 1

According to Lemma 1, it suffices to ensure that agent ¢ has an
incentive to take the recommended strategy when it neighbors’
ratings are #; = K. However, we need to prove that this holds
for all ratings of agent 7. Therefore, we suppress §; = K and
only write out §; whenever it is clear.

We prove the “only if” part first. We need to show that
for all rating protocol that is an equilibrium, 6b;(6,(K)) >
c(o(K)),¥i must be satisfied. Consider any rating level &
of agent 2, following the recommended strategy gives it the
following long-term utility,

Uilk,o) = ui(k,o) + § (B UK+ 1) + (1 — Bu)U (k)
(35)
Deviating to 0 gives the following long-term utility,

Ui(k,0) = u;(k,0) + 6 (U (k — 1) + (1 — ap)US (k)
(36)
Equilibrium requires that U;(k, o) > U;(k, 0). Therefore, the
following must hold,

wi(k,0) — ui(k,0) < 8 [BUF (k + 1) + (1 — B U (k)

—ap U (k= 1) = (1 — U7 (k)] (37)

According to Lemma 1.3, U*(K) > U7 (k),Vk in an equilib-
rium. Therefore, the following must hold,

1u;(k,0) — u;(k, o) < 8UF(K) (38)

The left-hand side is u;(k,0) — u;(k,0) = c(o;). Using the
recursive equation of the optimal long-term utilities (32), we
can compute the right-hand side as

UF(K) = il 1,00) = s (b (8:(1)) — e (0 (K)))

(39)
Substituting this into (38), we can obtain the desired result after
simple manipulations.

Next, we prove the “if” part by constructing a binary rating
protocol. According to the one-shot deviation principle, for
agent ¢ to follow the recommended strategy at §; = 2, we need

4i(2,0) — ui(2,05) < bap (UF(2) —UF(1))  (40)
for agent ¢ to follow the recommended strategy at , = 1, we
need

ui(1,0) = ui(1,04) < 641 (U7 (2) — U7 (1))

?

(41)

Using the value function (32), we can compute U*(2) — UZ(1)
which is
wi(2,0;) —ui(l,0;)

Vi) -0 = e

(42)

Moreover, u;{2,0) —u;(2,0;) = u;(1,0) —u;(1,0;) = ¢;(0).
For the rating protocol to be an equilibrium, we need to choose
2, (31 such that

ui(2,0;) —ui(l,0y)
1—6(1—01)

_ 6bi(6:(2)

—{(Mﬂﬁm

If we choose o = 1 = 1, then the above inequality holds.
This means that such a binary rating protocol is a PLE.

ci(o;) <{ao, 51}

(43)

APPENDIX C
DiISCcUSSION ON THE DCRS ALGORITHM

When developing the DCRS algorithm, we used the widely-
adopted dual decomposition method. However, there are several
significant differences from existing problems.

First, in most existing problems [23], [25], the constraint
in the optimization problem comes from the system resource
constraints. Our problem is not a NUM problem since we do
not have such resource constraints. Instead, the constraints
are derived based on the incentive-compatibility of agents,
i.e. the incentive condition under which the agents follow the
recommended strategy. More specifically, they are derived in
Theorem 1 (in the revised manuscript).

Second, in many standard dual decomposition problems [23],
[25], the objective functions are directly separable, in the sense
that an agent’s utility depends on its own action. The coupling
among agents only comes from the optimization constraints. For
example, the objective function can have the form > . f;(x;)
where z; is agent i’s action and f;(%;) is its utility. The ac-
tions of all agents need to satisfy some resource constraints
>, hi(®;) < 0. In our problem, an agent’s utility depends not
only on its own action but also on the neighboring agents’ ac-
tions, i.e. ). (b;(6;) — ¢;(0;)) where ; is agent ¢’s strategy and
0 is agent ¢’s neighbors strategies towards agent 7.

Third, even though dual decomposition allows distributed
implementation, in many existing works [23], [25], agents still
need to exchange messages with all other agents (e.g. by broad-
casting). This requires intensive message exchanges among
agents if broadcasting is not available and is even impossible if
agents’ interactions are subject to underlying topologies. How-
ever, our solution enables a completely distributed architecture
and message exchange only occurs between connected agents.
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