
ECON201B TA Section: Week 1

Yangbo Song

1 Extensive Form Game

· An extensive form game, G = (N,H,P, fc, {gi}Ii=1), consists of

– a. A (finite) set of players: N = {1, ..., I};

– b. A set of histories H such that (1)∅ ∈ H; (2)(a1, ..., ak) ∈ H → (a1, ..., al) ∈ H

∀l < k; (3)(a1, ...) ∈ H if (a1, ..., ak) ∈ H ∀k = 1, 2, ...;

– c. A set of terminal histories Z ⊂ H: (a1, ..., ak) ∈ Z ⇔ @ak+1 such that (a1, ..., ak+1) ∈

H;

– d. A function P : H \Z → N ∪{c} that defines the player who moves at each history

(c denotes nature);

– e. A function fc that assigns a probability distribution fc(h) ∈ ∆(Ac(h)). Ac(h) is

the set of available actions by nature at history h: Ac(h) = {a : (h, a) ∈ H,P (h) = c}

(Ai(h) below is defined similarly);

– f. A partition Ii of Hi = {h ∈ H : P (h) = i} ∀i ∈ N such that Ai(h) = Ai(h
′)

∀h, h′ ∈ Ii ∈ Ii, ∀i ∈ N ;

– g. A utility or payoff function for each player i ∈ N : gi : Z → R.

· Agent i’s strategy is defined in the following way:

– a. Define A(Ii) = Ai(h) : h ∈ Ii;

– b. A (pure) strategy for player i is a mapping si that assigns an action in A(Ii) to

each Ii;

– c. Example: Matching Pennies version A. One strategy for player 2 is (h|H,h|T ),

namely h no matter what player 1’s action is.
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2 Normal Form Game

· A normal form game, G = (N, {Si}Ii=1, {gi}Ii=1), consists of

– a. A (finite) set of players: N = {1, ..., I};

– b. For each player i, a set of actions(strategies) Si = {si};

– c. A utility or payoff function for each player i ∈ N : gi : S1× ...×SI → R. Note that

gi here is different from that in an extensive form game: now gi denotes the expected

payoff for agent i.

3 Transformation between the Two Game Forms: Examples

· From normal to extensive: consider the Prisoners’ Dilemma. The first number in each

cell is Row’s payoff while the second number is Column’s payoff.

Column

D C

Row D −5,−5 −1,−10

C −10,−1 −3,−3

We can transform it into an extensive form game by putting the two decision nodes for

the player who moves second in one information set. Note that there is more than one

way of transformation.
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· From extensive to normal: consider the following variation of Matching Pennies. To

transform it into a normal form game, first write out all strategies for each player, then

identify the payoff vector for each strategy combination.

2

h|I12 , h|I22 h|I12 , t|I22 t|I12 , h|I22 t|I12 , t|I22
1 H 0, 0 0, 0 0, 0 0, 0

T 0, 0 0, 0 0, 0 0, 0

4 Exercise

4.1 Dominance Solvability

Consider the following normal form game:

2

L M R

1 U 4, 10 3, 0 1, 3

D 0, 0 2, 10 10, 3

Is it dominance solvable? If yes, show the steps of IESDS. If no, briefly state the reason.

Now consider the following normal form game, which is a slight generalization of the

above:
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2

L M R

1 U 4, 10 3, 0 1, 3

D 0, 0 2, 10 10, x

What is the condition on x which would make the game dominance solvable?

Solution. In the original game, consider a mixed strategy 1
2L + 1

2M . For player 2, no

matter what strategy player 1 chooses, the mixed strategy would yield him a payoff of 5 > 3,

thus R can be eliminated. Then it is clear that D can be eliminated for player 1 and then

M for player 2, and the game is dominance solvable.

In the second game, first it can be observed that U,D,L cannot be eliminated for

the corresponding players in the first round of IESDS (iterated elimination of strictly

dominated strategies). For M to be eliminated, we must have x > 10, but after eliminating

M no strategy can be eliminated in the next round, which is a contradiction. Now given

that x ≤ 10, to eliminate R we must construct a mixed strategy pL + (1− p)M such that

10p > 3 and 10(1 − p) > x. For there to be a p satisfying these two conditions, we have

x ∈ (−∞, 7).

4.2 Second-price Auction

A second-price auction is a sealed-bid auction where the highest bidder gets the object and

pays the second highest bid. If there are more than one bidder with the highest bid, then

the winner is decided by a equal-probability random draw. Assume that valuations are

private (that is, each bidder’s valuation for the object does not affect any other bidder’s

valuation) and that valuations of bidders are iid ex ante. Show that it is a weakly dominant

strategy for each bidder to bid his own valuation.

Solution. Consider bidder i. Let b′ be the highest bid among bidders other than i and vi

be the valuation for bidder i. If vi ≥ b′, then it is weakly best to bid vi in order to win the

object and get vi − b′ ≥ 0; if vi < b′, then it is also weakly best to bid vi to lose and get 0,

rather than vi − b′ < 0.
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4.3 Median Voter Theorem

Consider an election with two candidates A and B. There are a continuum of citizens whose

most preferred policies are distributed continuously on [0, 1] with cdf F . The candidates

choose their policy simutaneously from [0, 1]. Each citizen then votes for the candidate

whose policy is closest to their most preferred one. The candidate with the majority of

votes wins. What would be the weakly dominant strategy for a candidate?

Solution. The weakly dominant strategy is to choose x such that F (x) = 1 − F (x). Let

y denote the opponent’s strategy, if y 6= x, then x guarantees a sure win; if y = x, then x

yields a 1
2 chance of winning while any other strategy would lead to a sure loss.

4.4 Public Good Provision

There are n villagers who have to decide whether to build a bridge. The value of the

bridge to villager i is vi ∈ [0, v], which is private information to i. At the beginning of the

bridge project, each vi is chosen by nature independently from some common distribution

F . The total cost of building the bridge is C. Consider the following mechanism: each

villager reports his or her valuation. If the sum of valuation is equal or greater than C,

then the bridge is built and each villager is taxed C
n ; otherwise the bridge is not built.

a. Name one strategy for a villager.

b. What is the weakly dominant strategy for each villager?

c. Suppose that each villager follows the weakly dominant strategy. Is the outcome always

Pareto efficient?

Solution. a. Report v′i = 1
2vi.

b. To report v if vi ≥ c
n , and 0 otherwise.

c. No. An easy example would be that n = 2, v1 = 2
3v, v2 = 0 and C = 5

6v.
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ECON201B TA Section: Week 2

Yangbo Song

1 Equivalence between NBR and Strictly Dominated Strat-

egy

Theorem 1. For a finite strategic game, si ∈ Si is never-best response if and only if it is

strictly dominated.

Before proving the above theorem (somewhat informally), it is crucial to notice that

correlated beliefs have to be allowed for this equivalence. In particular, the set of correlated

beliefs is denoted ∆(S−i), where S−i = ×j 6=iSj is the set of the pure strategy profile for

players other than i, as opposed to the set of independent beliefs ×j 6=i∆(Sj).

The proof of the theorem is as follows. First I define a zero− sum game as a strategic

game where the players’ payoffs always sum up to 0. The following lemma is stated without

proof:

Lemma 1. (Minimax Theorem) In a two-player zero-sum game, there exists a strategy

profile (α∗1, α
∗
2) ∈ ∆(S1)×∆(S2) such that

vi(α
∗
1, α
∗
2) := E[gi(s1, s2)|α∗1, α∗2] = max

α1

min
α2

vi(α1, α2) = min
α2

max
α1

vi(α1, α2)

∀i = 1, 2.

The ”if” part of the theorem is trivial. For the ”only if” part, suppose that s′i is NBR.

Consider tht following auxiliary zero-sum game with two hypothetical players 1 and 2:

1. Player 1’s set of pure strategies is Si \ s′i, player 2’s set of pure strategies is S−i.

2. Player 1’s payoff is u1(α1, α2) = vi(α1, α2)− vi(s′i, α2), player 2’s payoff is u2 = −u1.
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Now since s′i is NBR, minα2 maxα1 u1(α1, α2) > 0. Then by Lemma 1, maxα1 minα2 u1(α1, α2) >

0. This means that there exists α∗i ∈ ∆(Si \ s′i) such that vi(α
∗
i , s−i) > vi(s

′
i, s−i) ∀s−i.

2 Exercise

2.1 Cournot Competition with 3 Players

Consider the following Cournot competition game: the inverse market demand is given by

P = a − Q (a > 0) where Q denotes total production. There are 3 firms with the same

constant marginal cost 0. Show that the game is not dominance solvable.

Solution. It is easy to first derive that the best response for firm i to a total production by

the other two firms q−i is γ(q−i) = a−q−i

2 (the game is symmetric, so I omit the subscript

for γ. Thus we can eliminate (a2 ,+∞) for i in the first round of IESDS. But for the second

round, since now the range of q−i is [0, a], no strategy can be eliminate for i. Thus the

game is not dominance solvable.

2.2 Role of Correlation in Rationalizability

Consider the following 3-player game: the pure strategies are U,D for player 1, L,R for

player 2 and A,B,C for player 3. The payoffs are given in the following tables:

A

L R

U (1, 2, 1) (2, 4, 10)

D (2, 3, 10) (0, 0, 3)

B

L R

U (0, 5, 2) (1, 6, 0)

D (1, 2, 0) (7, 2, 2)

C

L R

U (0, 0, 3) (3, 1, 10)

D (1, 1, 10) (4, 3, 1)

Before deleting any strategy for players 1, 2, is B strictly dominated? Is it NBR to

independent randomization? Is it NBR to correlated randomization?

Solution. B is not strictly dominated because no mixture of A and C can yield a strictly

higher payoff in both cases (U,L) and (D,R). Denote mixed strategies for players 1 and

2 as pU + (1− p)D and qL+ (1− q)R, and consider a mixed strategy s = aA+ (1− a)C
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for player 3. The difference in expected payoff for 3 between s and B is

a(pq + 3(1− p)(1− q) + 10p(1− q) + 10q(1− p))

+ (1− a)(3pq + (1− p)(1− q) + 10p(1− q) + 10q(1− p))− (2pq + 2(1− p)(1− q))

=(1− 2a)pq + (2a− 1)(1− p)(1− q) + k(p, q)

where k(p, q) is strictly positive for any p, q ∈ [0, 1]. Note that for any p, q ∈ [0, 1], there

always exists a ∈ [0, 1] such that (1− 2a)pq + (2a− 1)(1− p)(1− q) ≥ 0. Therefore, B is

NBR to independent randomization. However, it is not NBR to correlated randomization

since it is BR to 1
2(U,L) + 1

2(D,R).
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ECON201B TA Section: Week 3

Yangbo Song

1 Sequential Rationality in Extensive Form Games of Per-

fect Information

In class we discussed backward induction, which yields a pure strategy NE. That particular

NE is named a subgame perfect Nash equilibrium (SPNE). To define such an equilibrium

explicitly, I first introduce the definition of a subgame.

Definition 1. (Informal1) A subgame of an extensive form game of perfect information

is one constructed by taking a node other than the terminal nodes as the initial node.

Essentially, backward induction is the process of choosing best responses for each player

in each subgame. Thus the concept SPNE is defined as follows:

Definition 2. A strategy profile in an extensive form game is a SPNE if it induces a NE

in every subgame.

Proposition 1. Every finite extensive form game of perfect information has a pure strat-

egy SPNE. Moreover, if no player has the same payoffs at any two terminal nodes, the

SPNE is unique.

The proof of this proposition simply follows from applying backward induction. One

should observe that the notion of SPNE is more restrictive than NE. In fact, for the

outcome to be SPNE, we need to assume common knowledge of sequential rationality,

rather than only rationality:

1For a formal definition of a subgame, please refer to MWG p.274.
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Definition 3. A strategy profile in an extensive form game of perfect information is

sequentially rational if each player’s payoff is maximized at each decision node, given the

other players’ strategies.

As a result, the set of SPNE can be a proper subset of the set of NE. The following

example illustrates one such case.

Example 1. (Centipede Game) Consider the following game: The unique SPNE is (TT, T ).

Yet there is another NE (TL, T ).

Example 2. (Chain Store Paradox) Consider the following game: The unique SPNE is

(Enter,Accomodate). Yet there is another NE (Stayout, F ight).
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2 Exercise

2.1 N-firm Cournot Competition

Consider the following Cournot Competition game: the market demand is given by P =

a−bQ where Q is the total production level. There are N firms in total with zero marginal

cost. Find a symmetric Nash equilibrium.

2.2 Convex Combination of Rationalizable Strategies

In a finite game, assume that A, B are two rationalizable pure strategies for a player.

Show that any convex combination of A and B is also rationalizable.

2.3 Location Game

(Micro Comp, Spring 2012) Two restaurants α and β have to simutaneously decide where

to locate on a street modeled as the closed interval [0, 1]. They can choose any k
n for

k = 0, 1, ..., n where n > 1 is an even integer. Suppose that customers are uniformly

distributed on [0, 1] and each customer will go to the nearest restaurant (ties are broken

with equal probability). The objective of each restaurant is to maximize its expected

profit, which is proportional to the number of customers it has. Answer the following

questions.

(a) Find all rationalizable strategies for each restaurant and all Nash equilibria.

(b) Add one more restaurant γ. Suppose that n = 8. Find all rationalizale strategies

for each restaurant. Is there a Nash equilibrium?

2.4 Finitely Repeated Prisoners’ Dilemma

Suppose that two players play Prisoners’ Dilemma for finitely many periods, and the payoff

to each agent is the sum of payoffs from every period. Use backward induction to derive

a Nash equilibrium. Is there any other NE?
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